• Title/Summary/Keyword: DGGE (denaturing gradient gel electrophoresis)

Search Result 167, Processing Time 0.028 seconds

Variations of Properties and Microbial Community during Fermentation of Makgeollies by Isolated Yeasts from Traditional Makgeollies (전통막걸리에서 분리한 효모균주를 이용한 막걸리 발효과정 중의 물성 및 미생물 군집의 변화)

  • Jeon, Myong Je;Jang, Min Kyung;Lee, Sol Jee;Park, Sung Hwan;Kim, Mihyang;Sohn, Jae Hak;Lee, Han-Seung;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.796-803
    • /
    • 2013
  • Property changes and bacterial characterizations by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were investigated during the fermentation of Makgeollies by 5 isolated yeast strains. Changes of pH were large between day 0 (pH 6) and day 2 (pH 3) and showed less variation after then. ANOVA analyses revealed that pHs were statistically different with fermentation times (p<0.001), while strains (p=0.60) did not. Acidities were changed from 0.19 to 1.04% and showed rather high increase from day 2, and fermentation times (p<0.001) and strains (p=0.006) represented statistical differences. All strains showed less than 0.150% at amino-type nitrogen contents except S strain showed 0.442% at day 8, and there were no statistical differences with fermentation times (p=0.4558) and strains (p=0.3513). Saccharinities of C strain were higher from day 4, and fermentation times (p<0.0001) and strains (p=0.007) showed statistical differences. Large variation of alcohol concentrations (%) were observed between day 0 (0%) and day 2 (10%) and showed less variation after day 2, and there was no statistical difference with strains. Dominant prokaryotes were Lactobacillus fermentum and Pediococcus pentosaceus, which producing acids and functional materials. Dominant eukaryote was Saccharomyces cerevisiae, which might be resulted from addition of yeasts.

Changes of the Bacterial Community Structure Depending on Carbon Source in Biological Phosphate Removing Process (생물학적 인 제거 공정에서 탄소원에 따른 미생물군집구조의 변화)

  • Yeo, Sang-Min;Lee, Young-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.165-172
    • /
    • 2006
  • In order to analyze the bacterial community structure including P-removal related organisms, PAOs(polyphosphate accumulating organisms) and GAOs(glycogen-accumulating non-poly-P organisms) occurred in biological phosphate removing process, 2 reactors(SBR; sequencing batch reactor) were operated on different carbon sources(sodium acetate, glucose). For the analysis of bacterial community structure, molecular methods(FISH: fluorescent in situ hybridization and DGGE; denaturing gel gradient electrophoresis) were employed. After 100 days reaction, $PO_4-P$ in effluent dropped to 3.92 mg/L in SBR #1(60.8% removal) fed by sodium acetate, and at the same time FISH results showed that ${\beta}$-subclass proteobacteria(39.67%) and PAOs(45.10%) were dominantly present whereas those value in SBR #2 fed by glucose was 8.30 mg/L(17% removal), and ${\gamma}$-subclass proteobacteria were considerably observed(23.89%) and PAOs was 21.42%. Also the result of DGGE indicated that ${\beta}$-subclass proteobacteria was dominantly observed in SBR #1. However as the temperature increased, the proportion of ${\beta}$-subclass proteobacteria and PAOs decreased, but phosphorus removing inhibitors(GAOs) increased. It suggests that the environmental factor like as temperature and types of carbon source had influence on the prevalence of phosphorus removing organism(PAOs) and phosphorus removing inhibitors(GAOs) in biological phosphate removing process.

Analysis of Microbial Community During the Anaerobic Dechlorination of Tetrachloroethylene (PCE) in Stream of Gimpo and Inchon Areas (경기도 김포, 인천 서구지역 소하천의 PCE 탈염소화 군집의 선별 및 다양성 분석)

  • Kim, Byung-Hyuk;Baek, Kyung-Hwa;Cho, Dea-Hyun;Sung, Youl-Boong;Ahn, Chi-Yong;Oh, Hee-Mock;Koh, Sung-Cheol;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.140-147
    • /
    • 2009
  • In this study, anaerobic enrichment cultivation was performed with the sediments from the Gimpo and Inchon areas. Lactate as an electron donor and PCE as an electron acceptor was injected into the serum bottle with an anaerobic medium. After the incubation of 8 weeks, the reductive dechlorination of PCE was observed in 7 sites among 16 sites (43%). Three enrichment cultures showed completely dechlorination of PCE to ethene, while four enrichment culture showed transformation of PCE to cis-DCE. The bacterial community structure was analyzed by PCR-DGGE. Dechlorinating bacteria were detected by species-specific primers. The dominant species in seven anaerobic enrichments were found to belong to the genus of Dehalococcoides sp. and Geobacter sp., and Dehalobacter sp.

Effect of Gynosaponin on Rumen In vitro Methanogenesis under Different Forage-Concentrate Ratios

  • Manatbay, Bakhetgul;Cheng, Yanfen;Mao, Shengyong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1088-1097
    • /
    • 2014
  • The study aimed to investigate the effects of gynosaponin on in vitro methanogenesis under different forage-concentrate ratios (F:C ratios). Experiment was conducted with two kinds of F:C ratios (F:C = 7:3 and F:C = 3:7) and gynosaponin addition (0 mg and 16 mg) in a $2{\times}2$ double factorial design. In the presence of gynosaponin, methane production and acetate concentration were significantly decreased, whereas concentration of propionate tended to be increased resulting in a significant reduction (p<0.05) of acetate:propionate ratio (A:P ratio), in high-forage substrate. Gynosaponin treatment increased (p<0.05) the butyrate concentration in both F:C ratios. Denaturing gradient gel electrophoresis (DGGE) analysis showed there was no apparent shift in the composition of total bacteria, protozoa and methanogens after treated by gynosaponin under both F:C ratios. The real-time polymerase chain reaction (PCR) analysis indicated that variable F:C ratios significantly affected the abundances of Fibrobacter succinogenes, Rumninococcus flavefaciens, total fungi and counts of protozoa (p<0.05), but did not affect the mcrA gene copies of methanogens and abundance of total bacteria. Counts of protozoa and abundance of F.succinogenes were decreased significantly (p<0.05), whereas mcrA gene copies of methanogens were decreased slightly (p<0.10) in high-forage substrate after treated by gynosaponin. However, gynosaponin treatment under high-concentrate level did not affect the methanogenesis, fermentation characteristics and tested microbes. Accordingly, overall results suggested that gynosaponin supplementation reduced the in vitro methanogenesis and improved rumen fermentation under highforage condition by changing the abundances of related rumen microbes.

Microbial Enrichment and Community Analysis for Bioelectrochemical Acetate Production from Carbon Dioxide (이산화탄소로부터 생물전기화학적 아세트산 생산을 위한 미생물 농화배양 및 군집 분석)

  • Kim, Junhyung;Kim, Young-Eun;Park, Myeonghwa;Song, Young Eun;Seol, Eunhee;Kim, Jung Rae;Oh, You-Kwan
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Microbial electrosynthesis has recently been considered a potentially sustainable biotechnology for converting carbon dioxide (CO2) into valuable biochemicals. In this study, bioelectrochemical acetate production from CO2 was studied in an H-type two-chambered reactor system with an anaerobic microbial consortium. Metal-rich mud flat was used as the inoculum and incubated electrochemically for 90 days under a cathode potential of -1.1 V (vs. Ag/AgCl). Four consecutive batch cultivations resulted in a high acetate concentration and productivity of 93 mmol/L and 7.35 mmol/L/day, respectively. The maximal coulombic efficiency (rate of recovered acetate from supplied electrons) was estimated to be 64%. Cyclic voltammetry showed a characteristic reduction peak at -0.2~-0.4 V, implying reductive acetate generation on the cathode electrode. Furthermore, several electroactive acetate-producing microorganisms were identified based on denaturing- gradient-gel-electrophoresis (DGGE) and 16S rRNA sequence analyses. These results suggest that the mud flat can be used effectively as a microbial source for bioelectrochemical CO2 conversion.

Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acid- and Metal-Tolerant Sulfate-Reducer

  • Nguyen, Hai Thi;Nguyen, Huong Lan;Nguyen, Minh Hong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1005-1012
    • /
    • 2020
  • Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)-like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.

Analysis and Quantification of Ammonia-Oxidizing Bacteria Community with amoA Gene in Sewage Treatment Plants

  • Hong, Sun Hwa;Jeong, Hyun Duck;Jung, Bongjin;Lee, Eun Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1193-1201
    • /
    • 2012
  • The analysis and quantification of ammonia-oxidizing bacteria (AOB) is crucial, as they initiate the biological removal of ammonia-nitrogen from sewage. Previous methods for analyzing the microbial community structure, which involve the plating of samples or culture media over agar plates, have been inadequate because many microorganisms found in a sewage plant are unculturable. In this study, to exclusively detect AOB, the analysis was carried out via denaturing gradient gel electrophoresis using a primer specific to the amoA gene, which is one of the functional genes known as ammonia monooxygenase. An AOB consortium (S1 sample) that could oxidize an unprecedented 100% of ammonia in 24 h was obtained from sewage sludge. In addition, real-time PCR was used to quantify the AOB. Results of the microbial community analysis in terms of carbon utilization ability of samples showed that the aeration tank water sample (S2), influent water sample (S3), and effluent water sample (S4) used all the 31 substrates considered, whereas the AOB consortium (S1) used only Tween 80, D-galacturonic acid, itaconic acid, D-malic acid, and $_L$-serine after 192 h. The largest concentration of AOB was detected in S1 ($7.6{\times}10^6copies/{\mu}l$), followed by S2 ($3.2{\times}10^6copies/{\mu}l$), S4 ($2.8{\times}10^6copies/{\mu}l$), and S3 ($2.4{\times}10^6copies/{\mu}l$).

Rapid Detection Methods for Food-Borne Pathogens in Dairy Products by Polymerase Chain Reaction (PCR 방법을 이용한 우유 및 유제품에서 발생하는 식중독 균의 신속 검출법)

  • Kwak, Hyelim;Han, Seonkyeong;Kim, Eiseul;Hong, Yeun;Kim, Haeyeong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.171-177
    • /
    • 2013
  • The dairy industry has consistently grown via the expansion of dairy-based food categories. Dairy product consumption is stable since the nutrient composition in dairy products is ideal for human health. However, dairy products are highly susceptible to food-borne pathogens. Controlling the safety of dairy products is thus important when considering the nutrient-rich matrix of this food category. Currently, immunoassays or molecular biology techniques have been used to evaluate the safety of dairy products in Korea. These methods are based on the detection of proteins and thus have low reproducibility and sensitivity. Recent techniques to detect food-borne pathogens have focused on genetic analyses. Rapid detection methods for food-borne pathogens in milk and dairy products using polymerase chain reaction (PCR) techniques, such as conventional PCR, real-time PCR, repetitive sequence-based (rep)-PCR, PCR-denaturing gradient gel electrophoresis (DGGE), and digital PCR, are reviewed in this article. The aim of this review was to contribute knowledge of the relationship between microflora and the quality of dairy products. This study will also assist in the immediate monitoring of food-borne pathogens in milk and dairy products when an outbreak related to this food category occurs.

  • PDF

Hydrogen Production from Tofu Manufacturing Wastewater by Heat-treated Anaerobic Microflora from the Concentrated Sewage Sludge (농축 하수오니 유래 열처리 혐기세균 복합체를 이용한 두부제조 폐수로부터 수소 생산)

  • Oh, You-Kwan;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.410-416
    • /
    • 2008
  • 합성 및 두부 제조 폐수로부터 혐기 세균 복합체를 이용하여 수소를 생산하였다. 수소생산 혐기 세균 복합체는 하수처리장 농축 소화조에서 발생하는 슬러지를 $90^{\circ}C$에서 20분간 열처리하여 얻었다. 혐기 세균 복합체는 $37^{\circ}C$ 회분식 운전조건에서 1% (w/v) 포도당 함유 PYG (peptone-yeast extract-glucose) 배지로부터 1.15 L-$H_2$/g-균체건조량의 수소를 생산할 수 있었고, 이때 주요 유기산으로 15 mM acetate와 32 mM butyrate가 생성되었다. 같은 발효조건에서 1.4% 전분과 0.07% 환원당을 포함하는 두부 제조 폐수로부터 1.76 L $H_2$/L-두부제조폐수의 수소를 발생하였다. 이와 같은 결과로 부터 포도당과 두부 제조 폐수로부터 혐기세균 복합체에 의한 수소생산 효율은 각각 1.9과 0.9 mol $H_2$/mol 포도당을 나타내었다. 반연속운전(HRT, 12 시간)시 합성폐수를 이용하여 60일 이상 안정적으로 수소를 생산할 수 있었고, 이 때 혐기 세균 복합체는 1.3-2.0 L $H_2$/L-배양액을 발생하였다. PCR-DGGE(polymer chain reaction-denaturing gradient gel electrophoresis) 분석결과, 반응기 내 세균 복합체의 주요 미생물은 Clostridium 종이었다. 본 연구는 적절한 열처리를 통해 혐기 소화조 슬러지로부터 고활성 수소생산 세균 복합체를 얻을 수 있으며, 이들 세균 복합체를 이용하여 합성 및 두부제조 폐수로부터 효율적인 수소생산이 가능하다는 것을 나타내고 있다.

Successful Enrichment of Rarely Found Candidatus Anammoxoglobus propionicus from Leachate Sludge

  • Hsu, Shu-Chuan;Lai, Yen-Chun;Hsieh, Ping-Heng;Cheng, Pun-Jen;Wong, Suen-Shin;Hung, Chun-Hsiung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.879-887
    • /
    • 2014
  • Bacteria that mediate the anaerobic oxidation of ammonium (anammox) have been detected in natural ecosystems, as well as various wastewater treatment systems. In this study, sludge from a particular landfill leachate anaerobic treatment system was selected as the incubation seed for anammox microorganism enrichment owing to its possible anammox activity. Transmission electron microscopy observation, denaturing gradient gel electrophoresis analysis, and cloning/sequencing techniques were applied to identify the diversity of anammox microorganisms throughout the incubation. During the early stage of operation, the diversity of anammox microorganisms was similar to the original complex microbes in the seed sludge. However, as incubation time increased, the anammox microorganism diversity within the system that was originally dominated by Candidatus (Ca.) Brocadia sp. was replaced by Ca. Anammoxoglobus propionicus. The domination of Ca. Anammoxoglobus propionicus produced a stable removal of ammonia (70 mg-N/l) and nitrite (90 mg-N/l), and the total nitrogen removal efficiency was maintained at nearly 95%. The fluorescence in situ hybridization results showed that Ca. Anammoxoglobus propionicus was successfully enriched from $1.8{\pm}0.6%$ initially to $65{\pm}5%$ after 481 days of operation. Therefore, the present results demonstrated the feasibility of enriching Ca. Anammoxoglobus propionicus from leachate sludge, even though the original cell count was extremely low. Application of this seldom found anammox organism could offer an alternative to current ammonia-nitrogen treatment.