• Title/Summary/Keyword: DGGE

Search Result 273, Processing Time 0.022 seconds

Effect of Disodium Fumarate on In vitro Rumen Fermentation of Different Substrates and Rumen Bacterial Communities as Revealed by Denaturing Gradient Gel Electrophoresis Analysis of 16S Ribosomal DNA

  • Mao, S.Y.;Zhang, G.;Zhu, W.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.543-549
    • /
    • 2007
  • Two experiments were conducted to investigate the effects of disodium fumarate on the in vitro rumen fermentation profiles of different substrates and microbial communities. In experiment 1, nine diets (high-forage diet (forage:concentrate, e.g. F:C = 7:3, DM basis), medium-forage diet (F:C = 5:5, DM basis), low-forage diet(F:C = 1:9, DM basis), cracked corn, cracked wheat, soluble starch, tall elata (Festuca elata), perennial ryegrass and rice straw) were fermented in vitro by rumen microorganisms from local goats. The results showed that during 24 h incubations, for all substrates, disodium fumarate increased (p<0.05) the gas production, and tended to increase (p<0.10) the acetate, propionate and total VFA concentration and decrease the ratio of acetate to propionate, whereas no treatment effect was observed for the lactate concentration. The apparent DM loss for tall elata, perennial ryegrass and rice straw increased (p<0.05) with the addition of disodium fumarate. With the exception of tall elata, perennial ryegrass and rice straw, disodium fumarate addition increased the final pH (p<0.05) for all substrates. In experiment 2, three substrates (a high-forage diet, a medium-forage diet and a high concentrate diet) were fermented by mixed rumen microbes in vitro. A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique was applied to compare microbial DNA fingerprints between substrates at the end of 24 h incubation. The results showed that when Festuca elata was used as substrate, the control and disodium fumarate treatments had similar DGGE profiles, with their similarities higher than 96%. As the ratio of concentrate increased, however, the similarities in DGGE profiles decreased between the control and disodium fumarate treatment. Overall, these results suggest that disodium fumarate is effective in increasing the pH and gas production for the diets differing in forage: concentrate ratio, grain cereals and soluble starch, and in increasing dry matter loss for the forages (tall elata, perennial ryegrass and rice straw) in vitro, whereas its effect on changes of ruminal microbial community may largely depend on the general nature of the substrate.

Bio-protective potential of lactic acid bacteria: Effect of Lactobacillus sakei and Lactobacillus curvatus on changes of the microbial community in vacuum-packaged chilled beef

  • Zhang, Yimin;Zhu, Lixian;Dong, Pengcheng;Liang, Rongrong;Mao, Yanwei;Qiu, Shubing;Luo, Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.585-594
    • /
    • 2018
  • Objective: This study was to determine the bacterial diversity and monitor the community dynamic changes during storage of vacuum-packaged sliced raw beef as affected by Lactobacillus sakei and Lactobacillus curvatus. Methods: L. sakei and L. curvatus were separately incubated in vacuumed-packaged raw beef as bio-protective cultures to inhibit the naturally contaminating microbial load. Dynamic changes of the microbial diversity of inoculated or non-inoculated (control) samples were monitored at $4^{\circ}C$ for 0 to 38 days, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Results: The DGGE profiles of DNA directly extracted from non-inoculated control samples highlighted the order of appearance of spoilage bacteria during storage, showing that Enterbacteriaceae and Pseudomonas fragi emerged early, then Brochothrix thermosphacta shared the dominant position, and finally, Pseudomonas putida showed up became predominant. Compared with control, the inoculation of either L. sakei or L. curvatus significantly lowered the complexity of microbial diversity and inhibited the growth of spoilage bacteria (p<0.05). Interestingly, we also found that the dominant position of L. curvatus was replaced by indigenous L. sakei after 13 d for L. curvatus-inoculated samples. Plate counts on selective agars further showed that inoculation with L. sakei or L. curvatus obviously reduced the viable counts of Enterbacteraceae, Pseudomonas spp. and B. thermosphacta during later storage (p<0.05), with L. sakei exerting greater inhibitory effect. Inoculation with both bio-protective cultures also significantly decreased the total volatile basic nitrogen values of stored samples (p<0.05). Conclusion: Taken together, the results proved the benefits of inoculation with lactic acid bacteria especially L. sakei as a potential way to inhibit growth of spoilage-related bacteria and improve the shelf life of vacuum-packaged raw beef.

Supplementing Rhodobacter sphaeroides in the diet of lactating Holstein cows may naturally produce coenzyme Q10-enriched milk

  • Bae, Gui-Seck;Choi, Ahreum;Yeo, Joon Mo;Kim, Jong Nam;Song, Jaeyong;Kim, Eun Joong;Chang, Moon Baek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • Objective: To examine the effects of Rhodobacter sphaeroides (R. sphaeroides) supplementation as a direct-fed microbial (DFM) on rumen fermentation in dairy cows and on coenzyme Q10 (CoQ10) transition into milk, an in vitro rumen simulation batch culture and an in vivo dairy cow experiment were conducted. Methods: The characteristics of in vitro ruminal fermentation were investigated using rumen fluids from six cannulated Holstein dairy cows at 2 h post-afternoon feeding. A control treatment was included in the experiments based on a typified total mixed ration (TMR) for lactating dairy cows, which was identical to the one used in the in vivo study, plus R. sphaeroides at 0.1%, 0.3%, and 0.5% TMR dry matter. The in vivo study employed six ruminally cannulated lactating Holstein cows randomly allotted to either the control TMR (C-TMR) treatment or to a diet supplemented with a 0.5% R. sphaeroides culture (S-TMR, dry matter basis) ad libitum. The presence of R. sphaeroides was verified using denaturing gradient gel electrophoresis (DGGE) applied to the bacterial samples obtained from the in vivo study. The concentration of CoQ10 in milk and in the supernatant from the in vitro study was determined using high performance liquid chromatography. Results: The results of the in vitro batch culture and DGGE showed that the concentration of CoQ10 significantly increased after 2 h of R. sphaeroides supplementation above 0.1%. When supplemented to the diet of lactating cows at the level of 0.5%, R. sphaeroides did not present any adverse effect on dry matter intake and milk yield. However, the concentration of CoQ10 in milk dramatically increased, with treated cows producing 70.9% more CoQ10 than control cows. Conclusion: The CoQ10 concentration in milk increased via the use of a novel DFM, and R. sphaeroides might be used for producing value-added milk and dairy products in the future.

Dynamics of Total Phosphorus and Attached Bacteria in a Porous Medium Concentrating Nutrients from Low-Nutrient Water (저농도 영양염류를 농축하는 여재에서 총인과 부착세균의 변화)

  • Kim, Ju-Young;Nam, Jong-Hyun;Jung, Da-Woon;Cho, Ahn-Na;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.133-139
    • /
    • 2009
  • A nutrient-concentrating system was operated to retrieve total phosphorus efficiently from a non-point pollution source. Attached bacteria were expected to play an important role in the system. Phosphorous was concentrated by formation of bacterial biofilms on rubberized coconut fiber media of the system. While concentration of total phosphorus (TP) ranged merely 0.12~0.35 mg/L in the stream water, TP levels in pore water and the media were 0.45~0.86 mg/L and 40.91~242.71 mg/kg, respectively. Total bacterial number (TBN) ranged $0.3\sim2.3\times10^6$ cells/ml in stream water, $0.4\sim4.4\times10^6$ cells/ml in pore water and $0.8\sim1.9\times10^9$ cells/g in media. There was a close correlation between TP and TBN. Based on band profiles in DGGE analyses, bacterial communities in the media were different from that in the stream water. Clostridium spp. were abundant in the stream water while Aquabacterium spp. were dominant species in early stages of biofilm formation in the media. The genera predominant in matured biofilms of the media were Clostridium and Enterococcus.

Molecular Analysis of the Microorganisms in a Thermophilic CSTR used for Continuous Biohydrogen Production (연속수소생성에 사용되는 고온 CSTR 내의 미생물의 분자적 분석)

  • Oh, You-Kwan;Park, Sung-Hoon;Ahn, Yeong-Hee
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.431-437
    • /
    • 2005
  • Molecular methods were employed to investigate microorganisms in a thermophilic continuous stirred tank reactor(CSTR) used for continuous $H_2$ production. The reactor was inoculated with heat-treated anaerobic sludge and fed with a glucose-based medium. Denaturing gradient gel electrophoresis showed dynamic changes of bacterial populations in the reactor during 43 days of operation. Gas composition was constant from approximately 14 days but population shift still occurred. Populations affiliated with Fervidobactrium gondwanens and Thermoanaerobacterium thermosaccharolyticum were dominant on 21 and 41 days, respectively. Keeping pH of the medium at 5.0 could suppress methanogenic activity that was detected during initial operation period. $CH_4$ and mcrA detected in the samples obtained from the reactor or inoculum suggested the heat treatment condition employed in this study is not enough to remove methanogens in the inoculum. PCR using primer sets specific to 4 main orders of methanogens suggested that major $H_2$-consuming methanogens in the CSTR belong to the order Methanobacteriales.

Autotrophic Perchlorate-Removal Using Zero-Valent Iron and Activated Sludge: Batch Test (영가철과 활성슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구)

  • Ahn, Yeong-Hee;Ha, Myoung-Gyu
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.444-450
    • /
    • 2011
  • Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Autotrophic perchlorate-reducing bacteria (PRB) use hydrogen gas ($H_2$) as an electron donor to remove perchlorate. Since iron corrosion can produce $H_2$, feasibility of autotrophic perchlorate-removal using zero-valent iron (ZVI) was examined in this study using activated sludge that is easily available from a wastewater treatment plant. Batch test showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of ZVI. The perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of iron particles used for the autotrophic perchlorate-removal, suggesting that iron particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of biofilm sample obtained from the ZVI-added enrichment culture used for $ClO_4^-$-degradation. A major band of the biofilm sample was most closely related to the class Clostridia.

Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

  • Nie, Yuanyang;Zhou, Zhiwei;Guan, Jiuqiang;Xia, Baixue;Luo, Xiaolin;Yang, Yang;Fu, Yu;Sun, Qun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.957-966
    • /
    • 2017
  • Objective: To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods: The denaturing gradient gel electrophoresis (DGGE) profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA) clustering and principal component analysis (PCA) were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG) database. Results: Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA) gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%), Rikenellaceae (11.3%), Lachnospiraceae (10.0%), and Bacteroidaceae (6.3%) were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%), proteins (12.3%), sugars (11.9%), nucleotides (6.8%), lipids (1.7%), xenobiotics (1.4%), coenzymes, and vitamins (3.6%). Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion: Yaks' age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks' growth, especially in young animals (0.5 and 1.5 years old). Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino acid, which are essential to the normal growth of yaks.

Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng

  • Xiao, Chunping;Yang, Limin;Zhang, Lianxue;Liu, Cuijing;Han, Mei
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Background: Panax ginseng cannot be cultivated on the same land consecutively for an extended period, and the underlying mechanism regarding microorganisms is still being explored. Methods: Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and BIO-LOG methods were used to evaluate the microbial genetic and functional diversity associated with the P. ginseng rhizosphere soil in various cultivation ages and modes. Results: The analysis of microbial diversity using PCR-DGGE showed that microbial communities were significantly variable in composition, of which six bacterial phyla and seven fungal classes were detected in P. ginseng soil. Among them, Proteobacteria and Hypocreales dominated. Fusarium oxysporum, a soilborne pathogen, was found in all P. ginseng soil samples except R0. The results from functional diversity suggested that the microbial metabolic diversity of fallow soil abandoned in 2003was the maximum and transplanted soil was higher than direct-seeding soil and the forest soil uncultivated P. ginseng, whereas the increase in cultivation ages in the same mode led to decreases in microbial diversity in P. ginseng soil. Carbohydrates, amino acids, and polymers were the main carbon sources utilized. Furthermore, the microbial diversity index and multivariate comparisons indicated that the augmentation of P. ginseng cultivation ages resulted in decreased bacterial diversity and increased fungal diversity, whereas microbial diversity was improved strikingly in transplanted soil and fallow soil abandoned for at least one decade. Conclusion: The key factors for discontinuous P. ginseng cultivation were the lack of balance in rhizosphere microbial communities and the outbreak of soilborne diseases caused by the accumulation of its root exudates.

Molecular and Ecological Analyses of Microbial Community Structures in Biofilms of a Full-Scale Aerated Up-Flow Biobead Process

  • Ju, Dong-Hun;Choi, Min-Kyung;Ahn, Jae-Hyung;Kim, Mi-Hwa;Cho, Jae-Chang;Kim, Tae-Sung;Kim, Tae-San;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.253-261
    • /
    • 2007
  • Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.

Effects of Transgenic Soybean Cultivation on Soil Microbial Community in the Rhizosphere (형질전환 콩 재배가 근권 토양 미생물상에 미치는 영향)

  • Lee, Ki-Jong;Sohn, Soo-In;Lee, Jang-Yong;Yi, Bu-Young;Oh, Sung-Dug;Kweon, Soon-Jong;Suh, Seok-Choel;Ryu, Tae-Hun;Kim, Kyung-Hwan;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.466-472
    • /
    • 2011
  • BACKGROUND: Soybean [Glycine max (L.) Merrill] is a legume and an important oil crop worldwide. This study was conducted to evaluate the possible impact of transgenic soybean cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with transgenic and non-transgenic soybeans were similar to each other, and there was no significant difference between transgenic and non-transgenic soybeans. Dominant bacterial phyla in the rhizosphere soils cultivated with transgenic or non-transgenic soybeans were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in transgenic and non-transgenic soybean soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed the different patterns, but didn't show significant difference to each other at 0.05 significance level. DNAs were isolated from soils cultivating transgenic or non-transgenic soybeans and analyzed for persistence of transgenes in the soil by using PCR. PCR analysis revealed that there were no amplified ${\gamma}$-tmt and bar gene in soil DNA. CONCLUSION(S): The results of this study suggested that microbial community of soybean field were not significantly affected by cultivation of the transgenic soybeans.