• Title/Summary/Keyword: DG (Distributed Generation)

Search Result 162, Processing Time 0.022 seconds

A Study for the Voltage Analysis of the Distribution System with the Wind Farm (풍력발전단지가 도입된 배전계통의 전압 해석에 대한 연구)

  • Lee, Dong-Gu;Kim, Chang-Sun;Kim, Tae-Eung;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.387-389
    • /
    • 2003
  • This paper presents a application of the voltage analysis method for practical distribution system with DG(Distributed Generation). If the wind farm system is introduced in the existing distribution systems, there are many serious impacts in systems. So it is practiced the voltage analysis for the distribution system when the wind farm is introduced. in this paper, we used computer simulations with the DistFlow Method for system analysis.

  • PDF

Observer-based Voltage Sensorless Control Scheme for an LCL-filtered Grid-connected Inverter

  • Lai, Ngoc Bao;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.266-267
    • /
    • 2017
  • To synchronize the distributed generation (DG) unit with the grid, the voltage sensors are generally employed to obtain the grid phase angle. This paper presents an observer-based voltage sensorless control scheme for a three-phase inverter connected to the grid through an LCL filter. The proposed control scheme consists of an augmented state observer and a feedback controller. The augmented state observer is used to estimate the grid voltages and states of the inverter system, which are then employed to determine the grid voltage angle and to construct the feedback controller. As a result of using the observer, only the grid current sensors are required to accomplish the control scheme. The simulation results are given to prove the validity of the proposed control scheme.

  • PDF

New Control Strategy for Conventional VSI in Islanded Microgrid to Enhance Voltage Quality under Nonlinear Loads

  • Dam, Duy-Hung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.351-352
    • /
    • 2015
  • This paper proposed a new control strategy for voltage source inverter (VSI) of effective fifth and seventh harmonic reduction in the point of common coupling (PCC) in islanded microgrid under nonlinear load without any additional hardware devices. The non-linear load regularly causes such harmonic distortion, which harmfully affect the performance of other loads or other distributed generation (DG) sources connect to the PCC. In order to improve the quality of delivered output voltage, these harmonic must be rejected. The proposed control strategy is developed based on the current controller formed by resonant controller parallel with a proportional integral controller, which perform on the fundamental reference frame. The reference current is estimated based on the voltage harmonic and the injecting power. The simulation and experimental results are shown to verify the effectiveness of proposed control method.

  • PDF

Improved Reactive Power Sharing and Harmonic Voltage Compensation in Islanded Microgrids Using Resistive-Capacitive Virtual Impedance

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1575-1581
    • /
    • 2019
  • Due to the mismatched line impedance among distributed generation units (DGs) and uncontrolled harmonic current, the droop controller has a number of problems such as inaccurate reactive power sharing and voltage distortion at the point of common coupling (PCC). To solve these problems, this paper proposes a resistive-capacitive virtual impedance control method. The proposed control method modifies the DG output impedance at the fundamental and harmonic frequencies to compensate the mismatched line impedance among DGs and to regulate the harmonic current. Finally, reactive power sharing is accurately achieved, and the PCC voltage distortion is compensated. In addition, adaptively controlling the virtual impedance guarantees compensation performance in spite of load changes. The effectiveness of the proposed control method was verified by experimental results.

A Novel Hybrid Islanding Detection Method Using Digital Lock-In Amplifier (디지털 록인 앰프를 이용한 새로운 하이브리드 방식의 단독운전 검출법)

  • Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.77-79
    • /
    • 2019
  • Islanding detection is one of the most important issues for the distributed generation (DG) systems connected to the power grid. The conventional passive islanding detection methods inherently have a non-detection zone (NDZ), and active islanding detection methods may deteriorate the power quality of a power system. This paper proposes a novel hybrid islanding detection method based on Digital Lock-In Amplifier with no NDZ by monitoring the harmonics present in the grid. Proposed method detects islanding by passively monitoring the grid voltage harmonics and verify it by injecting small perturbation for only three-line cycles. Unlike FFT for the harmonic extraction, DLA HC have lower computational burden, moreover, DLA can monitor harmonic in real time, whereas, FFT has certain propagation delay. The simulation results are presented to highlight the effectiveness of the proposed technique. In order to prove the performance of the proposed method it is compared with several passive islanding detection methods. The experimental results confirm that the proposed method exhibits outstanding performance as compared to the conventional methods.

  • PDF

Improved Decoupled Control and Islanding Detection of Inverter-Based Distribution in Multibus Microgrid Systems

  • Pinto, Smitha Joyce;Panda, Gayadhar
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1526-1540
    • /
    • 2016
  • This work mainly discusses an accurate and fast islanding detection based on fractional wavelet packet transform (FRWPT)for multibus microgrid systems. The proposed protection scheme uses combined desirable features retrieved from discrete fractional Fourier transform (FRFT) and wavelet packet transform (WPT) techniques, which provides precise time-frequency information on minute perturbation signals introduced in the system. Moreover, this study focuses on the design of decoupling control with a distributed controller based on state feedback for the efficient operation of microgrid systems that are transitioning from the grid-connected mode to the islanded mode. An IEEE 9-bus test system with inverter based distributed generation (DG) units is considered for islanding assessment and smooth operation. Finally, tracking errors are greatly reduced with stability improvement based on the proposed controller. FRWPT based islanding detection is demonstrated via a time domain simulation of the system. Simulated results show an improvement in system stability with the application of the proposed controller and accurate islanding detection based on the FRWPT technique in comparison with the results obtained by applying the wavelet transform (WT) and WPT.

Artificial Intelligence Application using Nutcracker Optimization Algorithm to Enhance Efficiency & Reliability of Power Systems via Optimal Setting and Sizing of Renewable Energy Sources as Distributed Generations in Radial Distribution Systems

  • Nawaf A. AlZahrani;Mohammad Hamza Awedh;Ali M. Rushdi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.31-44
    • /
    • 2024
  • People have been using more energy in the last years. Several research studies were conducted to develop sustainable energy sources that can produce clean energy to fulfill our energy requirements. Using renewable energy sources helps to decrease the harm to the environment caused by conventional power plants. Choosing the right location and capacity for DG-RESs can greatly impact the performance of Radial Distribution Systems. It is beneficial to have a good and stable electrical power supply with low energy waste and high effectiveness because it improves the performance and reliability of the system. This research investigates the ideal location and size for solar and wind power systems, which are popular methods for producing clean electricity. A new artificial intelligent algorithm called Nutcracker Optimization Algorithm (NOA) is used to find the best solution in two common electrical systems named IEEE 33 and 69 bus systems to examine the improvement in the efficiency & reliability of power system network by reducing power losses, making voltage deviation smaller, and improving voltage stability. Finally, the NOA method is compared with another method called PSO and developed Hybrid Algorithm (NOA+PSO) to validate the proposed algorithm effectiveness and enhancement of both efficiency and reliability aspects.

A Strategy for Balanced Power Regulation of Energy Storage Systems in a Distribution System during Closed-Loop Operation

  • Han, Yoon-Tak;Oh, Joon-Seok;Cha, Jae-Hun;An, Jae-Yun;Hyun, Seung-Yoon;Lee, Jong-Kwan;Seo, In-Yong;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2208-2218
    • /
    • 2017
  • To resolve overload in a distribution system, a distribution system operator (DSO) often performs a load transfer using normally open tie points and switches in the distribution line. During this process, the distribution system is momentarily operated in closed-loop operation. A closed-loop current in the distribution system can cause a power failure due to excess breaking current in the circuit breakers and reclosers. Therefore, it is necessary to calculate the closed-loop current exactly. However, if there are a large number of distributed generation (DG) systems in the distribution system, such as energy storage systems (ESS), they might obstruct the closed-loop operation based on bidirectional power flow. For quick and precise operation of a closed-loop system, the ESS has to regulate the power generation while satisfying closed-loop operation in the worst cases. We propose a strategy for balanced power regulation of an ESS. Simulations were carried out using PSCAD/EMTDC, and the results were compared with calculation results.

Energy Performance Evaluation of Building Micro-grid System Including Micro-turbine in Hospital Buildings (마이크로터빈이 포함된 빌딩마이크로그리드시스템의 병원건물의 에너지성능평가)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.279-283
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat. and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30% after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40%. If electricity energy and waste heat in turbine are used, 56% of heating energy and 67% of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70%.

  • PDF

Development of a Coordinated Voltage Regulation Scheme in Distribution Networks with Multiple Distributed Generations (협조 제어를 이용한 분산전원 연계 배전계통의 전압조정 방식 개발)

  • Oh, Yun-Sik;Cho, Kyu-Jung;Kim, Min-Sung;Kim, Ji-Soo;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1309-1316
    • /
    • 2017
  • As penetration level of Distributed Generations (DGs) on weak distribution networks gets higher, voltage rise problem can often occur due to reverse power which is not expected in conventional distribution networks. It, however, cannot be effectively solved by using conventional voltage regulating devices such as On-Load Tap Changers (OLTCs), Step Voltage Regulators (SVRs) because those do not consider the presence of DGs when determining relevant setting parameter for voltage regulation. This paper presents a scheme for voltage regulation using coordinated control between OLTC and DGs which can actively participate in the regulation. The scheme decides which device should be operated first based on the characteristics of regulating devices, in order to prevent unnecessary operation of output changes of DG and excessive tap changing operation of OLTC. Computer simulations considering daily irradiation of PV and load curve are performed by using MATLAB Simulink and performance comparison between the presented scheme and conventional ones is also made. It can be concluded from simulation results that the scheme presented is very effective to regulate voltages in distribution networks with multiple DGs.