• Title/Summary/Keyword: DFT Filter

Search Result 57, Processing Time 0.031 seconds

Design of the fast adaptive digital filter for canceling the noise in the frequency domain (주파수 영역에서 잡음 제거를 위한 고속 적응 디지털 필터 설계)

  • 이재경;윤달환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the high speed noise reduction processing system using the modified discrete fourier transform(MDFT) on the frequency domain. The proposed filter uses the linear prediction coefficients of the adaptive line enhance(ALE) method based on the Sign algorithm The signals with a random noise tracking performance are examined through computer simulations. It is confirmed that the fast adaptive digital filter is realized by the high speed adaptive noise reduction(HANR) algorithm with rapid convergence on the frequency domain(FD).

High Precise Measurement of Grid-Connected Inverter using DFT (DFT를 이용한 계통연계 인버터 시스템의 고정밀 계측)

  • Lee, Sang-Hyeok;Kang, Feel-Soon;Lee, Sang-Hun;Cho, So-Eog;Lee, Tae-Won;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.93-98
    • /
    • 2012
  • A precise measurement of the grid voltage is one of the essential techniques, which is required to connect a renewable energy to the grid. In general, when a filter is used to eliminate unnecessary harmonics and noises, a signal is distorted by phase delay, amplitude attenuation, and other distortions. And the response characteristic of a controller is directly affected by bandwidth of cut-off frequency of the filter. To alleviate this problems, we propose an effective algorithm based on DFT(Discrete Fourier Transform) instead of approaching the filter application. The proposed algorithm ensures high precise measurement of the grid voltage because it can extract the fundamental and harmonics from the raw signal without any distortions. The high performance of the proposed algorithm is verified by PSIM simulation and experiments of Grid-Connected VSI.

A Study of High Accuracy Measurement for Grid Voltage (계통 전압의 고정밀 계측에 관한 연구)

  • Lee, Sang-Hyeok;Im, Sang-Gil;Lee, Sang-Hun;Kang, Feel-Soon;Cho, Su-Eog;park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.477-478
    • /
    • 2011
  • 본 논문에서는 신재생 에너지를 전력 계통에 효율적으로 연계시키기 위한 요소 기술로 Filter 대신 DFT 기법을 사용한 고정밀 계측에 대해 제안한다. 일반적으로 Filter를 사용할 경우 원신호의 위상 지연, 크기 감소 같은 신호 왜곡으로 정확한 제어가 어려우나, 제안된 DFT 기법을 사용하면 기존 문제점을 해결 가능하다. 따라서 본 논문에서 제안된 DFT 기법은 PSIM을 이용한 시뮬레이션과 실험을 통해 제안된 알고리즘의 타당성과 우수성을 검증하였다.

  • PDF

Study on Advanced Frequency Estimation Technique using Gain Compensation

  • Park, Chul-Won;Shin, Dong-Kwang;Kim, Chul-Hwan;Kim, Hak-Man;Kim, Yoon-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.439-446
    • /
    • 2011
  • Frequency is an important operating parameter for the protection, control, and stability of a power system. Thus, it must be maintained very close to its nominal frequency. Due to the sudden change in generation and loads or faults in a power system, however, frequency deviates from its nominal value. An accurate monitoring of the power frequency is essential for optimum operation and prevention of wide area blackout. Most conventional frequency estimation schemes are based on the DFT filter. In these schemes, the gain error could cause defects when the frequency deviates from the nominal value. We present an advanced frequency estimation technique using gain compensation to enhance the DFT filter-based technique. The proposed technique can reduce the gain error caused when the frequency deviates from the nominal value. Simulation studies are performed using both the data from EMTP-RV software and the user-defined arbitrary signals to demonstrate the effectiveness of the proposed algorithm. Results show that the proposed algorithm achieves good performance under both steady state tests and dynamic conditions.

Performance Evaluation of Advanced Frequency Estimation Technique using 765kV Modeling Data (765kV 모델링 데이터에 의한 개선된 주파수 추정기법의 성능 평가)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.253-257
    • /
    • 2010
  • The frequency is an important operation parameter for the control, protection, and stability of a power system. The frequency as a key index of power quality can be indicative of system abnormal conditions and disturbances. Due to the sudden change in generation and loads or faults in power system, the frequency is supposed to deviate from its nominal value. It is essential that the frequency must be maintained very close to its nominal frequency. An accurate monitoring of the power frequency is essential to optimal operation and prevention for wide area blackout. As most conventional frequency estimation schemes are based on DFT filter, it has been pointed out that the gain error could cause defects when the frequency is deviated from nominal value. This paper presents an advanced frequency estimation technique using gain compensation to improve the performance of DFT filter based techniques. To evaluate performance of the proposed algorithm, the 765kV T/L system in Korea is simulated by EMTP-RV software. The proposed technique can reduce the gain error caused when the power system frequency deviates from nominal value.

A Study on Digital Fault Locator for Transmission Line (송전선로용 디지털 고장점 표정장치에 관한 연구)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.291-296
    • /
    • 2015
  • Transmission line is exposed to a large area, and then faults are likely to occur than the other component of power system. When a fault occurs on a transmission line, fault locator helps fast recovery of power supply on power system. This paper deals with the design of a digital fault locator for improvement accuracy of the fault distance estimation and a fault occurrence position for transmission line. The algorithm of a fault locator uses a DC offset removal filter and DFT filter. The algorithm utilizes a fault data of GPS time synchronized. The computed fault information is transmitted to the other side substation through communication. The digital fault locator includes MPU module, ADPU module, SIU module, and a power module. The MMI firmware and software of the fault locator was implemented.

A Comparative Study of Frequency Estimation Techniques using High Speed FIR Filter and Phasor Angle between Two Phasors (고속 FIR 필터와 두 페이저 위상을 이용한 주파수 추정 알고리즘의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.122-129
    • /
    • 2009
  • Frequency is an important operating parameter of a power system. It is essential that the frequency of a power system be maintained very close to its nominal frequency. And frequency measurement devices have need to measure a fast and accurate of frequency using voltage signals. This paper proposes a comparative study of frequency estimation techniques using the high speed FIR filter based algorithm, the DFT filter based algorithm using phasor angle between two phasors, and positive sequence component based algorithm using the half angle between two successive positions of phasor. The discussed three techniques have been formed through numerical manipulation of a discrete system. The proposed techniques have been tested using signals obtained from selected power system model using ATP simulation package. Some test results are shown in this paper.

PLL Method Using The Improved Discrete Fourier Transform (개선된 DFT를 이용한 위상 추종방법)

  • Kim, Jae-Hyung;Ji, Young-Hyok;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.91-93
    • /
    • 2008
  • In this paper, novel phase angle following algorithm for the single phase grid-connected inverter is proposed. Gird-connected inverter needs phase angle detection for synchronization grid voltage with the inverter output. In case of single phase grid-connected inverter, zero crossing detection and virtual 2-phase PLL using digital all pass filter or digital low pass filter are used conventionally. But these methods have a weakness for harmonics, noises and ripples. The proposed method of PLL achieve DFT(Discrete Fourier Transform) using Goertzel algorithm. It can extract fundamental voltage of grid. As a results, it can obtain phase angle using digital all pass filter without effect of harmonics, noises and ripples. Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.

  • PDF

An implementation of the hybrid SoC for multi-channel single tone phase detection (다채널 단일톤 신호의 위상검출을 위한 Hybrid SoC 구현)

  • Lee, Wan-Gyu;Kim, Byoung-Il;Chang, Tae-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.388-390
    • /
    • 2006
  • This paper presents a hybrid SoC design for phase detection of single tone signal. The designed hybrid SoC is composed of three functional blocks, i.e., an analog to digital converter module, a phase detection module and a controller module. A design of the controller module is based on a 16-bit RISC architecture. An I/O interface and an LCD control interface for transmission and display of phase measurement values are included in the design of the controller module. A design of the phase detector is based on a recursive sliding-DFT. The recursive architecture effectively reduces the gate numbers required in the implementation of the module. The ADC module includes a single-bit second-order sigma-delta modulator and a digital decimation filter. The decimation filter is designed to give 98dB of SNR for the ADC. The effective resolution of the ADC is enhanced to 98dB of SNR by the incorporation of a pre FIR filter, a 2-stage cascaded integrator- comb(CIC) filter and a 30-tab FIR filter in the decimation. The hybrid SoC is verified in FPGA and implemented in 0.35 CMOS Technology.

  • PDF

Performance analysis of multi-carrier CDMA system using an orthogonal pair of quadrature filter banks (직교 쌍 필터 뱅크 기반 다중 반송파 CDMA 시스템의 성능분석)

  • 이재철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1570-1578
    • /
    • 2000
  • A quadrature pair of filter banks that are composed of a pair of cosine and sine modulated filter banks is applied to MC-CDMA data transmultiplexing in the view point of mitigating inter-channel interferences. Exploiting superior capabilities of wavelet properties in composing the filter banks the proposed scheme is capable of compromising inter-channel interference problems better than the conventional DFT-based MC-CDMA due to superior subchannelization effects. To verify the behavior of our proposed MC-CDMA system based on the quadrature filter banks the reverse-link bit error rates with respect to signal-to-noise ratio under Rayleigth fading and additive white Gaussian noise channel environments are computed. The results show an improved system performance over the conventional MC-CDMA in the view point of minimizing interference effects.

  • PDF