• Title/Summary/Keyword: DFT Filter

Search Result 57, Processing Time 0.029 seconds

Design of M-Channel IIR Uniform DFT Filter Banks Using Recursive Digital Filters

  • Dehghani, M.J.;Aravind, R.;Prabhu, K.M.M.
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.345-355
    • /
    • 2003
  • In this paper, we propose a method for designing a class of M-channel, causal, stable, perfect reconstruction, infinite impulse response (IIR), and parallel uniform discrete Fourier transform (DFT) filter banks. It is based on a previously proposed structure by Martinez et al. [1] for IIR digital filter design for sampling rate reduction. The proposed filter bank has a modular structure and is therefore very well suited for VLSI implementation. Moreover, the current structure is more efficient in terms of computational complexity than the most general IIR DFT filter bank, and this results in a reduced computational complexity by more than 50% in both the critically sampled and oversampled cases. In the polyphase oversampled DFT filter bank case, we get flexible stop-band attenuation, which is also taken care of in the proposed algorithm.

  • PDF

High Frequency Noise Reduction Method Using a Newly Designed Low-pass Filter in DFT-Based Phasor Estimation (DFT 기반 페이저 연산 시 새로운 저역통과필터를 이용한 고주파 노이즈 경감 방법)

  • Baek, Min-Woo;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.898-904
    • /
    • 2017
  • DFT(Discrete Fourier Transform) is one of the most widely used method to estimate the phasor of a relaying signal. The harmonics are eliminated by the DFT. However, high frequency components, except for harmonics, are not removed and cause an error in DFT-based phasor estimation process. This paper suggests high frequency noise reduction method by using a newly designed low-pass filter to estimate a signal phasor. When selecting a stop-band cut-off frequency of the low-pass filter, high frequency components generated by faults are considered. To reduce the phasor estimation delay caused by a low-pass filter, this paper proposes a low-pass filter whose settling time is reduced. An adverse effect of high frequency noise on DFT-based phasor estimation is reduced. To evaluate the performance of the proposed method, signals which are collected under a fault condition at a 345[kV] transmission system modeled by EMTP-RV are used.

Active Damping for Wind Power Systems with LCL Filters Using a DFT

  • Lee, June-Seok;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.326-332
    • /
    • 2012
  • This paper proposes a simple active damping algorithm for small-scale wind power systems with an LCL filter. Compared to an L filter or an LC filter, an LCL filter can decrease the harmonics induced by low switching frequencies and produce a satisfactory grid-side current using a comparatively low inductance. Additional active damping of the filter resonance is necessary when an LCL filter is used. This paper introduces an active damping method using a Discrete Fourier Transform (DFT) filter to improve performance without additional sensors or complexity. Experimental results are shown to verify the validity of the proposed algorithm as an active damping method.

The Design of UFR with Fast Frequency Measurement Technique (고속의 주파수 계측 알고리즘을 갖는 저주파 계전기 설계)

  • Park, Jong-Chan;Kim, Byung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • In this paper, the frequency estimator and DFT filter gain compensation for UFR(Under Frequency protection Relay) is introduced. Due to the sudden appearance of generator loads or faults in power system, the frequency is supposed to deviate from its nominal value. Because a frequency calculation is based on phase information, it needs sufficient sampling data to figure out a precious frequency. Therefore the frequency measurement for UFR needs excellent qualities such as high speed and precision with low sampling frequency Authors propose the frequency estimator which compares the vector differences and the DFT filter gain compensation which identifies DFT filter error and correct it. Using the frequency estimator and compensation, UFR which has the 0.01[ms] calculation delay and 0.003[Hz] measurement error is implemented with digital processor.

PAPR Evaluation and Analysis of Candidate Waveforms Using DFT Spreading for 5G Mobile Communications (DFT Spreading을 사용한 5세대 이동통신 후보 변조기술의 PAPR 평가 및 분석)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1091-1099
    • /
    • 2015
  • UFMC(Universal-Filtered Multi-carrier) and FBMC(Filter Bank Multi-carrier) system are receiving attention as candidate waveforms for 5G mobile communication system. But, these systems have high PAPR(Peak to Average Power Ratio) problem because these systems use a number of subcarrier. In this paper, we propose DFT(Discrete Fourier Transform) spreading based DFT-s(spreading)-UFMC system and DFT-s-FBMC system in order to overcome the PAPR drawback. In order to evaluate PAPR performance of the proposed systems, we design and simulate OFDM(Orthogonal Frequency Division Multiplexing), UFMC, FBMC, DFT-s-OFDM, DFT-s-UFMC, DFT-s-FBMC system. As simulation results, each PAPR performance of DFT-s-OFDM system, DFT-s-UFMC system, and DFT-s-FBMC system rise by 2.7 dB, 2.8 dB, and 1.1 dB respectively by DFT spreading technique.

BER Performance Comparison and Evaluation of 5G Candidate Waveforms Based on DFT Spreading under the Nonlinear HPA (비선형 HPA 환경에서 DFT Spreading 기반 5세대 후보변조기술의 BER 성능 비교와 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.415-423
    • /
    • 2016
  • High PAPR (Peak-to-Average Power Ratio) characteristic causes some problems like system performance degradation and OOB (Out-of-Band) power increasement under the HPA (High Power Amplifier) nonlinearity condition. UFMC (Universal Filtered Multi-Carrier) and FBMC (Filter Bank Multi-Carrier) are regarded as 5G(Generation) candidate waveforms. In this paper, we evaluate and analyze performance of these systems with DFT-s (Discrete Fourier Transform Spreading) technique under the nonlinear HPA environment. In this paper, we describe OFDM (Orthogonal Frequency Division Multiplexing), UFMC, FBMC, DFT-s-OFDM, DFT-s-UFMC, and DFT-s-FBMC system, and evaluate BER (Bit Error Rate) performance of these systems. As simulation results, BER performance degradation by HPA nonlinearity of DFT-s-OFDM and DFT-s-UFMC is greatly overcome by DFT spreading technique. However, BER performance degradation by HPA nonlinearity of DFT-s-FBMC system is little overcome.

DFT-based Power System Frequency Estimation using Two Digital Filters for Noise Effect Reduction (잡음영향의 저감을 위한 두 디지털 필터들의 사용에 의한 DFT 기반의 계통주파수 추정)

  • Hwang, Jin Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.891-897
    • /
    • 2013
  • The power system frequency plays an important role in monitoring and controlling the power system. The frequency can be measured through discrete Fourier transform (DFT) coefficients of its positive fundamental frequency. The accuracy of the frequency estimate is severely affected by noise in the power system signal and the leakage effect of the negative fundamental frequency in DFT. This paper proposes a DFT-based frequency estimation algorithm to cope with the noise as well as the leakage effect. In this algorithm, two suitable digital filters are introduced to reduce efficiently frequency estimate error due to the noise. These filters are designed to use a digital bandpass filter and a second-degree integrator. The effectiveness of the proposed algorithm in reduction of frequency estimate error is verified through simulations on noise, harmonics and frequency deviation.

A DFT Deblurring Algorithm of Blind Blur Image (무정보 blur 이미지 복구를 위한 DFT 변환)

  • Moon, Kyung-Il;Kim, Chul
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.3
    • /
    • pp.517-524
    • /
    • 2011
  • This paper presents a fast blind deconvolution method that produces a deblurring result from a single image in only a few seconds. The high speed of our method is enabled by considering the Discrete Fourier Transform (DFT), and its relation to filtering and convolution, and fast computation of Moore-Penrose inverse matrix. How can we predict the behavior of an arbitrary filter, or even more to the point design a filter to achieve certain specifications. The idea is to study the frequency response of the filter. This concept leads to an useful convolution formula. A Matlab implementation of our method usually takes less than one minute to deblur an image of moderate size, while the deblurring quality is comparable.

  • PDF

Enhanced Fault Location Algorithm for Short Faults of Transmission Line (1회선 송전선로 단락사고의 개선된 고장점 표정기법)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.955-961
    • /
    • 2016
  • Fault location estimation is an important element for rapid recovery of power system when fault occur in transmission line. In order to calculate line impedance, most of fault location algorithm uses by measuring relaying waveform using DFT. So if there is a calculation error due to the influence of phasor by DC offset component, due to large vibration by line impedance computation, abnormal and non-operation of fault locator can be issue. It is very important to implement the robust fault location algorithm that is not affected by DC offset component. This paper describes an enhanced fault location algorithm based on the DC offset elimination filter to minimize the effects of DC offset on a long transmission line. The proposed DC offset elimination filter has not need any erstwhile information. The phase angle delay of the proposed DC offset filter did not occurred and the gain error was not found. The enhanced fault location algorithm uses DFT filter as well as the proposed DC offset filter. The behavior of the proposed fault location algorithm using off-line simulation has been verified by data about several fault conditions generated by the ATP simulation program.

Analysis on the transient response of Polyphase DFT filter banks in the frequency hopping communication satellite transponder (주파수 도약 통신위성 중계기의 다상 DFT 필터뱅크 과도기 응답 분석)

  • Lee, Daeil;Joo, Jaikwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.610-615
    • /
    • 2014
  • Filterbanks have been widely used in the field of multi-channel signal processing for their simple efficient implementation architectures. Especially, the polyphase DFT(Discrete Fourier Transform) filterbank is the most preferred filterbank for the uniform spaced multi-channel processing due to its simplicity. In frequency hopped communication systems, however, the use of the polyphase DFT filterbank is limited due to its undesirable transient response from hop-to-hop transitions. In this paper, the transient response of polyphase DFT filterbanks in the hop-to-hop transition was analyzed, and the efficient methods to overcome such a problem was proposed. Simulation results showed that the proposed schemes could resolve this issue efficiently.