• 제목/요약/키워드: DFIG Wind Power System

검색결과 79건 처리시간 0.031초

PSS/E를 이용한 제주계통의 DFIG 풍력발전단지 및 HVDC 동적모델 개발 (Development of Dynamic Models for DFIG Wind Farms and HVDC in Jeju Power System Using PSS/E)

  • 남순열;강상희;남해곤;최준호
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2183-2189
    • /
    • 2011
  • Since main portion of the required electric power in Jeju Island is provided from the mainland through two HVDC lines, Jeju HVDC has a most significant impact on Jeju power system. Average wind speed of Jeju Island is the highest among several candidates in South Korea. So, Jeju Island has been a suitable site for the construction of wind farms where several wind farms are now operating and several others to be sited. Since the large-scale wind generation could have adverse impacts on the stable operation of Jeju power system, wind power is also important for the stability of Jeju power system. Therefore, accurate modeling of Jeju HVDC and wind farms is required for stability analysis of Jeju power system. In this paper, PSS/E-based dynamic modeling of Jeju HVDC and DFIG wind farms is proposed. Model-writing technique of PSS/E is used to develop USRAUX model and USRMDL model for controlling the frequency of HVDC and imposing an operation limit of wind power, respectively. Dynamic characteristics of Jeju HVDC and DFIG wind farms are analyzed through the dynamic simulations. The simulation results show the effectiveness of the developed models for Jeju power system.

Novel DC Grid Connection Topology and Control Strategy for DFIG-based Wind Power Generation System

  • Yi, Xilu;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.466-472
    • /
    • 2013
  • The paper presents a novel DC grid connection topology and control strategy for doubly-fed induction generator (DFIG) based wind power generation system. In order to achieve the wind power conversion, the stator side converter and the rotor side converter is used to implement the DFIG control based on the indirect air-gap flux orientation, and a DC/DC converter is used for the DFIG system to DC grid connection. The maximum power point tracking and DC voltage droop control can also be implemented for the proposed DFIG system. Finally, a 4-terminal DFIG-based multi-terminal DC grid system is developed by Matlab to validate the availability of the proposed system and control strategy.

출력변동 저감 및 출력범위 예측 향상을 위한 풍력-연료전지 하이브리드 시스템의 운영방법 (Operation Scheme to Regulate the Active Power Output and to Improve the Forecasting of Output Range in Wind Turbine and Fuel-Cell Hybrid System)

  • 김윤성;문대성;원동준
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.531-538
    • /
    • 2009
  • The paper deals with an operation scheme to improve the forecasting of output range and to regulate the active power output of the hybrid system consisting of a doubly fed induction generator (DFIG) and a fuel-cell. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. The power fluctuation of a DFIG makes its operation difficult when a DFIG is connected to grid. A fuel cell system can be individually operated and adjusted output power, hence the wind turbine and fuel cell hybrid system can overcome power fluctuation by using a fuel-cell power control. In this paper, a fuel-cell is performed to regulate the active power output in comparison with the regulated active power output of a DFIG. And it also improves the forecasting of output range. Based on PSCAD/EMTDC tools, a DFIG and a proton exchange membrane fuel cell(PEMFC) is simulated and the dynamics of the output power in hybrid system are investigated.

풍력발전용 시뮬레이터 개발 (Development of Simulator for Wind Power Generation)

  • 서영거;이지은;고종선
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1123-1129
    • /
    • 2009
  • The main goal of this paper is to simulate a Doubly-Fed Induction Generator (DFIG), which is similar to a real system. Wind velocity data is applied to a 2D Lookup table as a speed reference for a turbine model. A real electric machine's parameters are put in the simulator to get some results of the real system. The Matlab have been generally used to simulate DFIG, but it has some differences from the real system and is difficult to implement. A Simplorer simulator, however, simplifies DFIG simulation. The turbine is directly connected with the DFIG to be close to the real system. The machine's rotor is excited and controlled by the discrete carrier modulated matrix converter. It is possible to retrieve important information, like a generated power and wind quality etc., from the simulator without a huge wind turbine.

실제 풍속을 이용한 DFIG 풍력발전시스템 구현에 관한 연구 (A Study on DFIG Wind Power Generation System Modelling using Real-Wind Speed)

  • 변길성;박인권;장길수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.494_495
    • /
    • 2009
  • This paper presents a study of DFIG wind power generation system for real-time simulation. For real-time simulation, the real-time digital simulator (RTDS) and its user friendly interface simulation software (RSCAD) are used. 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. Stator-flux oriented vector control scheme is applied to stator, rotor side converter control, and back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for realistic and accurate simulation analysis. Block diagrams for DFIG and control scheme of stator, rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

  • PDF

PSCAD를 이용한 DFIG풍력발전 최대출력 풍력발전 제어방법에 관한 연구 (Simulation Study on Capturing Maximum Wind Power Control Method of DFIG based on PSCAD/EMTDC)

  • 손계도;최준호;박성준;남순열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1122_1123
    • /
    • 2009
  • Doubly Fed Induction Generator (DFIG) used in variable speed constant frequency wind energy generation system can capture wind energy with the highest efficiency by using the stator flux oriented vector control method. This paper sets up a DFIG modeling of wind generation system in PSCAD/EMTDC to simulate the operational performance with wind speed variation. In order to achieve the characteristics of the maximum utilization of wind power, this paper uses the vector control technology to track largest wind power and the independent control of generator active and reactive power.

  • PDF

Modeling and Control of a Doubly-Fed Induction Generator (DFIG) Wind Power Generation System for Real-time Simulations

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.61-69
    • /
    • 2010
  • This paper presents a study of a DFIG wind power generation system for real-time simulations. For real-time simulations, the Real-Time Digital Simulator (RTDS) and its user friendly interface simulation software RSCAD are used. A 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. The stator-flux oriented vector control scheme is applied to the stator/rotor side converter control, and the back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for a realistic, reliable and accurate simulation analysis. Block diagrams, a mathematical presentation of the DFIG and a control scheme of the stator/rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

Improved LVRT Capability and Power Smoothening of DFIG Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.568-575
    • /
    • 2011
  • This paper proposes an application of energy storage devices (ESD) for low-voltage ride-through (LVRT) capability enhancement and power smoothening of doubly-fed induction generator (DFIG) wind turbine systems. A grid-side converter (GSC) is used to maintain the DC-link voltage. Meanwhile, a machine-side converter (MSC) is used to control the active and reactive powers independently. For grid disturbances, the generator output power can be reduced by increasing the generator speed, resulting in an increased inertial energy of the rotational body. Design and control techniques for the energy storage devices are introduced, which consist of current and power control loops. Also, the output power fluctuation of the generator due to wind speed variations can be smoothened by controlling the ESD. The validity of the proposed method has been verified by PSCAD/EMTDC simulation results for a 2 MW DFIG wind turbine system and by experimental results for a small-scale wind turbine simulator.

DFIG 풍력터빈이 연계된 전력계통의 CCT 영향분석 (CCT Analysis of Power System Connected to DFIG Wind Turbine)

  • 서규석;박지호
    • 한국산학기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.2388-2392
    • /
    • 2013
  • 풍력발전시스템은 기존의 발전시스템과 매우 다르다. 그러므로 전력계통에 풍력시스템을 연계하기 위해서는 동적특성에 대한 연구가 필요하다. 풍력발전기의 안정도해석은 전력계통의 운영에 있어서 중요 쟁점이다. 기존의 동기발전기만으로 구성된 전력계통의 위상각 안정도는 풍력발전기가 포함되면 그 결과가 달라진다. 즉, 풍력터빈에 연계된 발전기는 대부분 비동기인 유도발전기이기 때문이다. 위상각의 동기화 여부로 판별하는 위상각 안정도는 임계고장제거시간(CCT)을 계산하여 평가한다. 계통해석용 풍력터빈의 모델은 다양하여 그 해석에 어려움이 있으나 지금은 크게 4가지 타입으로 표준화가 되어있다. 본 논문에서는 PSS/E-32에서 제공하는 풍력터빈의 3번째 표준모델인 DFIG(Doubly-Fed induction Generator)모델을 이용하여 풍력단지가 연계된 전력계통의 CCT를 풍력단지의 위치와 용량을 고려하여 분석한다.

정출력 조정을 위한 풍력-연료전지 하이브리드 시스템의 운영 기법 (Operation Scheme to Regulate Constant Active Power Output of Wind Turbine and Fuel-Cell Hybrid System)

  • 김윤성;문대성;원동준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1174-1175
    • /
    • 2008
  • A operation scheme to regulate the active power output of the hybrid system consisted of a doubly fed induction generator(DFIG) and a fuel-cell are presented. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. A fuel cell system can be individually operated and adjusted output power. In this paper, a fuel-cell is performed to regulate the active output power in comparison with the active power output of a DFIG. Based on PSCAD/EMTDC power system tools, we simulated a DFIG and a fuel cell and investigated about dynamics of the output power in hybrid system.

  • PDF