• Title/Summary/Keyword: DFAIV

Search Result 3, Processing Time 0.024 seconds

Probing the Critical Residues for Intramolecular Fructosyl Transfer Reaction of a Levan Fructotransferase

  • Moon, Keum-Ok;Choi, Kyoung-Hwa;Kang, Ho-Young;Oh, Jeong-Il;Jang, Se-Bok;Park, Cheon-Seok;Lee, Jong-Hoon;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1064-1069
    • /
    • 2008
  • Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose-2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase.

High-Level Production of Low-Branched Levan from Pseudomonas aurantiaca S-4380 for the Production of $di-\beta-D-Fructofuranose$ Dianhydride IV

  • JANG KI-HYO;JANG EUN-KYUNG;KIM SEUNG-HWAN;KIM IN-HWAN;KANG SOON AH;KOH ISSAC;PARK YOUNG-IL;KIM YOUNG-JUN;HA SANG-DO;KIM CHUL HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.102-108
    • /
    • 2006
  • The IscA gene, encoding a levansucrase of 424 amino acids (aa) residues, was cloned from the genomic DNA of Pseudomonas aurantiaca S-4380, and overexpressed in Escherichia coli. The recombinant levansucrase overexpressed in E. coli was then used to produce levan from sucrose. Levan crystals with 98% purity could be obtained from the reaction mixture with $62\%$ yield using an alcohol precipitation method. The molecular weight of the levan was $7\times10^5$ daltons. Methylation studies showed that the levan was branched: main linkage C-2,6; branched linkage C-2,1; and degree of branching $6\%$. Three bacterial levans from different strains were incubated with levan fructotransferase (LFTase) from Arthrobacter ureafaciens K2032, which produced $di-\beta-D-fructofuranose$ dianhydride IV (DFA IV); final conversion yields from the levans to DFA IV were $39\%$ in Zymomonas mobilis, $53\%$ in Serratia levanicum, and $59\%$ in P. aurantiaca S-4380 levansucrase. The levan from P. aurantiaca S-4380 levansucrase gave the highest conversion yield of levan to DFAIV so far reported.

Purification and Biological Characterization of Wild-type and Mutants of a Levan Fructotransferase from Microbacterium sp. AL-210 (Microbacterium sp. A-210이 생성하는 Levan fructotransferase의 정제 및 생물학적 특성에 관한 연구)

  • Hwang, Eun-Young;Jeong, Mi-Suk;Cha, Jae-Ho;Jang, Se-Bok
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1218-1225
    • /
    • 2009
  • Difractose anhydrides (DFAs) is studied as a sweetener for diabetics because of its structural property. DFAs have four types: DFA I, III, IV (degradation of levan) and V (degradation of inulin). Especially, DFA IV has been shown to enhance the absorption of calcium in experiments using rats. Levan fructotransferase is an enzyme for producing di-d-fructose-2,6':6,2-dianhydride (DFA IV). To identify structural characterization, we purified wild-type and mutants (D63A, D195N and N85S) of levan fructotransferase (LFTase) from Microbacterium sp. AL-210. These proteins were purified to apparent homogeneity by Ni-NTA affinity column, Q-sepharose ion exchange and gel filtration chromatography and detected by SDS-PAGE. They were also analyzed by circular dichroism (CD) measurements, JNET secondary structure prediction, activity measurements at various temperatures, and pH analysis. The optimum pH for the enzyme-catalyzed reaction was pH 7.5 and optimum temperature was observed at $55^{\circ}C$. Along with wild-type LFTase, mutants were analyzed by CD measurement, fluorescence analysis and differential scanning calorimetry (DSC). N85S showed less $\alpha$-helix and more $\beta$ strand than others. Also, N85S showed almost the same curve as wild-type in their steady-state fluorescence spectra, whereas mutant D63A and D195N showed higher intensity than wild-type. The amino acid sequence of wild-type LFTase was compared to the sequences of exo-inulinase from Aspergillus awamori, a plant fructan 1-exohydrolase from Cichorium intybus, and Thermotogo maritime (Tm) invertase and showed a high identity with Exo-inulinase from Aspergillus awamori.