• Title/Summary/Keyword: DESTRUCTIVE TESTING

Search Result 605, Processing Time 0.025 seconds

A Development of Automatic Extraction System for Welding Inspection Information based on Shipbuilding and Maritime CAD (조선해양 CAD 기반 용접검사 정보 자동 추출 시스템 개발)

  • Kim, Bae-Sung;Hwang, Hun-Gyu;Song, Chang-Sub;Lee, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.28-36
    • /
    • 2020
  • In shipbuilding industry, there is conducting most of works by welding at the shipyard, and the volume of welding is increasing with international trends of green ships. Welding joint is guaranteed quality through non-destructive testing (NDT). The manual welding inspection report is produced by identifying the drawings designed, which results in losses the many workforce and occurs human errors. To solve these problems, this paper covers a system that reports on inspection information is automatically generation by input data based on shipbuilding-specific CAD. The developed system analyzes the shape data from drawings of modeling. Also, the system determines welding joints through expansion of the part boundary and generates tag numbers. In addition, it provides the function to automatically extract the information needed for inspection such as weld length, thickness and etc. We conducted test to verify the usefulness of the developed system and confirmed that the welding inspection information extracted through system matches the information shown in drawings of modeling.

The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures (원전 구조물 결함 탐지를 위한 음향방출 신호 처리 방안에 대한 기초 연구)

  • Kim, Jong-Hyun;Korea Aerospace University, Jae-Seong;Lee, Jung;Kwag, No-Gwon;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.485-492
    • /
    • 2009
  • The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection.

Verification of the HWAW (Harmonic Wavelet Analysis of Waves) Method Using Multi Layered Model Testing Site (실대형 모형부지를 이용한 HWAW(Harmonic Wavelet Analysis of Waves) 기법의 검증)

  • Kim, Jong-Tae;Park, Hyong-Choon;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.33-46
    • /
    • 2007
  • HWAW (Harmonic Wavelet Analysis of Wave) method, which is non-destructive method using body and surface waves, has the advantages of obtaining 2D subsurface imaging because it uses a short receiver spacing to obtain the $V_s$ profile of whole depth. Even though the reliability of HWAW method has already been verified by using the numerical simulation in the various layered models, it is very difficult to evaluate the reliability of HWAW in the field because the exact $V_s$ values of the experimental site are unknown. In this study, a model testing site where the material properties and layer information could be controlled was constructed to verify the reliability of HWAW method. The detailed geometry of the testing site was strictly measured by surveying, and 140 vertical and horizontal geophones were established at the boundary of each layer to evaluate the dynamic material properties. Using the interval travel times between the upper and lower geophones, the body wave velocities of each layer were 2 dimensionally obtained as reference data, and comparative study using HWAW method was performed. By comparing 2D Vs profile obtained by HWAW method to the reference data, the reliability of HWAW method was verified.

Evaluation of Rolling Contact Fatigue Evaluation of Wheel for High Speed Train Using a Scan Type Magnetic Camera (자기카메라에 의한 고속철도 차륜의 구름접촉 피로평가)

  • Hwang, Ji-Seong;Kwon, Seok-Jin;Lee, Jin-Yi;Seo, Jung-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.957-965
    • /
    • 2011
  • Recently, railway industry has been developed not only functional parts such as acceleration and high performance of the railway but also emotional parts such as improved ride comfort and blocking noise. However, some important components of railway such as wheel and rail always had exposed too much operation time, cyclic load and rolling contact directly. The variations of load, vibration and chemical compositions were caused of wheel and rail having a lot of different types of contact fatigue damages. Therefore, It is necessary to improve inspection and maintenance technology in order to ensure safety and reliability of railway. Many researchers have already been reported the technology. Magnetic camera, one of the non-destructive testing technique can be used to inspect and evaluate the changes of magnetic field in ferromagnetic and paramagnetic materials with cracks. When an electromagnetic is applied to a specimen, a magnetic field will be distorted around a crack on the specimen. In present paper, the distribution of magnetic property in wheel with cracks using magnetic camera had investigated. The crack can be detected and evaluated by distribution analysis of magnetic field. The magnetic camera technique can be detected and evaluated the crack by rolling contact fatigue.

  • PDF

A Study on the Estimation of Strength Nondestructive Test of the Admixture Concrete (혼화콘크리트의 비파괴 강도 추정에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Kim, Pan-Sun;Cho, Cheol-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.217-226
    • /
    • 2005
  • This study made member specimen for taking specimen, core with the concrete mixing normal concrete, admixture and conducted the same air curing as field conditions. After performing destructive and nondestructive test by age, estimate expression was suggested by analyzing correlations between compressive strength, rebound number and ultrasonic pulse velocity and the results are as follows. As a result of comparing error rate of existing expressions and this estimation expression, error rate of this estimation is reduced compared to existing expressions and has higher reliability. When conventional concrete expression is applied to admixture concrete, error rate occurs and then this study suggests the estimation expressions depending on types of admixture concrete.

A Study on the Effect of Specimen Size using Resistivity Estimation Model (비저항추정모델을 이용한 실험체 크기의 영향에 대한 연구)

  • Lim, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.113-119
    • /
    • 2019
  • This study aims at the analysis using the Resistivity Estimation Model (REM) to examine the effect of specimen size on the measurement of electrical resistivity. In the experiment, specimens of concrete were fabricated and the apparent resistivity was measured for each electrode interval. The apparent resistivity measured was found to be distorted in the apparent resistivity as the specimen size became smaller and closer to the outside (edge). As a result of comparing the experimental and analysis values, it is expected that REM can be used to examine the effect of the size of the specimen.

Calculus of the defect severity with EMATs by analysing the attenuation curves of the guided waves

  • Gomez, Carlos Q.;Garcia, Fausto P.;Arcos, Alfredo;Cheng, Liang;Kogia, Maria;Papelias, Mayorkinos
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.195-202
    • /
    • 2017
  • The aim of this paper is to develop a novel method to determine the severity of a damage in a thin plate. This paper presents a novel fault detection and diagnosis approach employing a new electromagnetic acoustic transducer, called EMAT, together with a complex signal processing method. The method consists in the recognition of a fault that exists within the structure, the fault location, i.e. the identification of the geometric position of damage, and the determining the significance of the damage, which indicates the importance or severity of the defect. The main scientific novelties presented in this paper is: to develop of a new type of electromagnetic acoustic transducer; to incorporate wavelet transforms for signal representation enhancements; to investigate multi-parametric analysis for noise identification and defect classification; to study attenuation curves properties for defect localization improvement; flaw sizing and location algorithm development.

Thickness-Dependent Properties of Undoped and Mn-doped (001) PMN-29PT [Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.290-298
    • /
    • 2018
  • In order to investigate the effect of thickness on the dielectric and piezoelectric properties of (001) PMN-29PT single crystals, three different types of PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: high density crystal [99%], low density crystal [95%], and high density crystal doped with Mn [98.5%]. When their thickness decreased from 0.5 mm to 0.05 mm, their dielectric constant ($K_3{^T}$), piezoelectric constants ($d_{33}$ and $g_{33}$), and electromechanical coupling factor ($k_t$) decreased continuously. However, their dielectric loss (tan ${\delta}$) increased. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$), increased the coercive electric field ($E_C$), and prevented local depoling. Therefore, Mn-doped PMN-PT crystals show high stability as well as high performance, even in the form of very thin plates (< 0.2 mm), and thus are suitable for application to high frequency composites, medical ultrasound probes, non-destructive testing devices (NDT), and flexible devices.

A Reliability Growth Prediction for a One-Shot System Using AMSAA Model (AMSAA 모델을 이용한 일회성 체계의 신뢰도성장 예측)

  • Kim, Myung Soo;Chung, Jae Woo;Lee, Jong Sin
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.225-229
    • /
    • 2014
  • A one-shot device is defined as a product, system, weapon, or equipment that can be used only once. After use, the device is destroyed or must undergo extensive rebuild. Determining the reliability of a one-shot device poses a unique challenge to the manufacturers and users due to the destructive nature and costs of the testing. This paper presents a reliability growth prediction for a one-shot system. It is assumed that 1) test duration is discrete(i.e. trials or rounds); 2) trials are statistically independent; 3) the number of failures for a given system configuration is distributed according to a binomial distribution; and 4) the cumulative expected number of failures through any sequence of configurations is given by AMSAA model. When the system development is represented by three configurations and the number of trials and failures during configurations are given, the AMSAA model parameters and reliability at configuration 3 are estimated by using a reliability growth analysis software. Further, if the reliability growth predictions do not meet the target reliability, the sample size of an additional test is determined for achieving the target reliability.

The Application Technique on AI and Statistical Analysis of 3d-PD (3d-PD의 통계적 고찰과 신경망 응용기술)

  • Lim, Jang-Seob;Park, Yong-Sik;Choi, Byoung-Ha;Han, Sok-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.66-70
    • /
    • 2001
  • The partial discharge testing is widely used in diagnostic measuring technology because it gives low stress to power equipment which is undertaken tests. Therefore it is very useful method compare to previous destructive methods and effective diagnosis method in power system that requires on-line/on-site diagnosis. But partial discharges have very complex characteristics of discharge pattern, so it is required continuous research to development of precise analysis method. In recent, the study of partial discharge is carrying out discover of initial defect of power equipment through condition diagnosis and system development of degradation diagnosis using HFPD(High Frequency Partial Discharge) detection. In this study, simulated system is manufactured and HFPD occurred from those simulator is measured with broad-band antenna in real time, the degradation grade of system is analyzed through produced patterns in simulated target according to the AI/statistics processing.

  • PDF