Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.3.07

Thickness-Dependent Properties of Undoped and Mn-doped (001) PMN-29PT [Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals  

Oh, Hyun-Taek (R&D Division, Ceracomp Co., Ltd.)
Joo, Hyun-Jae (R&D Division, Ceracomp Co., Ltd.)
Kim, Moon-Chan (R&D Division, Ceracomp Co., Ltd.)
Lee, Ho-Yong (Department of Materials Science and Engineering, Sunmoon University)
Publication Information
Abstract
In order to investigate the effect of thickness on the dielectric and piezoelectric properties of (001) PMN-29PT single crystals, three different types of PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: high density crystal [99%], low density crystal [95%], and high density crystal doped with Mn [98.5%]. When their thickness decreased from 0.5 mm to 0.05 mm, their dielectric constant ($K_3{^T}$), piezoelectric constants ($d_{33}$ and $g_{33}$), and electromechanical coupling factor ($k_t$) decreased continuously. However, their dielectric loss (tan ${\delta}$) increased. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$), increased the coercive electric field ($E_C$), and prevented local depoling. Therefore, Mn-doped PMN-PT crystals show high stability as well as high performance, even in the form of very thin plates (< 0.2 mm), and thus are suitable for application to high frequency composites, medical ultrasound probes, non-destructive testing devices (NDT), and flexible devices.
Keywords
Piezoelectric; Single Crystal; 71PMN-29PT; Thickness; Mn Doping;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S.-E. Park and T. R. Shrout, "Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals," J. Appl. Phys., 82 [4] 1804-11 (1997).   DOI
2 S. Zhang and F. Li, "High Performance Ferroelectric Relaxor-$PbTiO_3$ Single Crystals: Status and Perspective," J. Appl. Phys., 111 [3] 031301-1-50 (2012).   DOI
3 B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric Ceramics; pp. 135-81, Academic Press London and New York, 1997.
4 S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, and X. Geng, "Advantages and Challenges of Relaxor-$PbTiO_3$ Ferroelectric Crystals for Electroacoustic Transducers - A Review," Prog. Mater. Sci., 68 1-66 (2015).   DOI
5 X. Jiang, J. Kim, and K. Kim, "Relaxor-PT Single Crystal Piezoelectric Sensors," Crystals, 4 [3] 351-76 (2014).   DOI
6 Y. Chen, K.-H. Lam, D. Zhou, Q. Yue, Y. Yu, J. Wu, W. Qiu, L. Sun, C. Zhang, H. Luo, H. L. W. Chan, and J. Dai, "High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications," Sensors, 14 [8] 13730-58 (2014).   DOI
7 Q. Zhou, K.-H. Lam, H. Zheng, W. Qiu, and K. K. Shung, "Piezoelectric Single Crystal Ultrasonic Transducers for Biomedical Applications," Prog. Mater. Sci., 66 87-111 (2014).   DOI
8 G.-T. Hwang, J. Yang, S.-H. Yang, H.-Y. Lee, M. Lee, D.-Y. Park, J.-H. Han, S.-J. Lee, C.-K. Jeong, H. Kim. K.-I. Park, and K.-J. Lee, "A Reconfigurable Rectified Flexible Energy Harvester via Solid-State Single Crystal Grown PMN-PZT," Adv. Energy Mater., 5 [10] 1500051 (2015).   DOI
9 D.-H. Kim, H.-J. Shin, H. Lee, C. Kyu, H. Park, G.-T. Hwang, H.-Y. Lee, D. J. Joe, J.-H. Han, S.-H. Lee, J. Kim, B. Joung, and K.-J. Lee, "In Vivo Self-Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters," Adv. Funct. Mater., 27 [25] 1700341 (2017).   DOI
10 H. Jae, S. Zhang, and T. R. Shrout, "Scaling Effects of Relaxor-$PbTiO_3$ Crystals and Composites for High Frequency Ultrasound," J. Appl. Phys., 107 [12] 124107 (2010).   DOI
11 H. Jae, S. Zhang, J. Luo, F. Li, and T. R. Shrout, "Thickness-Dependent Properties of Relaxor-$PbTiO_3$ Ferroelectrics for Ultrasonic Transducers," Adv. Funct. Mater., 20 [18] 3154-62 (2010).   DOI
12 H. Dammak, M. Guennou, C. Ketchazo, M. Pham Thi, F. Brochin, T. Delaunay, P. Gaucher, E. Le Clezio, and G. Feuillard, "Sample Thickness Dependence of Electromechanical Properties of PZN-PT and PMN-PT Single Crystals"; pp. 249-52 in Proceedings of the 15th IEEE International Symposium on Applications of Ferroelectrics, Sunset Beach, North Carolina, 2006.
13 S.-J. L. Kang, J.-H. Park, S.-Y. Ko, and H.-Y. Lee, "Solid-State Conversion of Single Crystals: The Principle and the State-of-the-Art," J. Am. Ceram. Soc., 98 [2] 347-60 (2015).   DOI
14 H.-Y. Lee, Development of High-Performance Piezoelectric Single Crystals by Using Solid-state Single Crystal Growth (SSCG) Method; pp. 158 in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ed. by Z.-G. Ye, CRC Press, New York, 2008.
15 S. Zhang, S.-M. Lee, D.-H. Kim, H.-Y. Lee, and T. R. Shrout, "Elastic, Piezoelectric, and Dielectric Properties of $0.71Pb(Mg_{1/3}Nb_{2/3})O_3$-$0.29PbTiO_3$ Crystals Obtained by Solid-State Crystal Growth," J. Am. Ceram. Soc., 91 [2] 683-86 (2008).   DOI
16 ANSI/IEEE Std 176-1987, IEEE Standard on Piezoelectricity, 1987.
17 S. Zhang, S.-M. Lee, D.-H. Kim, H.-Y. Lee, and T. R. Shrout, "Temperature Dependence of the Dielectric, Piezoelectric, and Elastic Constants for $Pb(Mg_{1/3}Nb_{2/3})O_3$- $PbZrO_3-PbTiO_3$ Piezocrystals," J. Appl. Phys., 102 [11] 114103-1-5 (2007).   DOI
18 S. Zhang, S.-M. Lee, D.-H. Kim, H.-Y. Lee, and T. R. Shrout, "Characterization of Mn-modified $Pb(Mg_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ Single Crystals for High Power Broad Bandwidth Transducers," Appl. Phys. Lett., 93 [12] 122908-1-3 (2008).   DOI
19 S. Zhang, C. Randall, and T. R. Shrout, "Characterization of Perovskite Piezoelectric Single Crystals of $0.43BiScO_3-0.57PbTiO_3$ with High Curie Temperature," J. Appl. Phys., 95 [8] 4291-95 (2004).   DOI
20 M. Davis, Phase Transitions, Anisotropy and Domain Engineering: the Piezoelectric Properties of Relaxor-ferroelectric Single Crystals, pp. 71-82, in Ph.D. Thesis, Swiss Federal Institute of Technology-EPFL, Lausanne, 2006.
21 F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, "Composition and Phase Dependence of the Intrinsic and Extrinsic Piezoelectric Activity of Domain Engineered (1-x)PMN-xPT Crystals," J. Appl. Phys., 108 [3] 034106 (2010).   DOI
22 K. Carl and K. H. Hardtl, "Electrical After-Effect in $Pb(Ti,Zr)O_3$ Ceramics," Ferroelectrics, 17 [1] 473-86 (1978).   DOI
23 Y. Gao, K. Uchino, and D. Viehland, "Time Dependence of the Mechanical Quality Factor in Hard Lead Zirconate Titanate Ceramics: Development of an Internal Dipolar Field and High Power Origin," Jpn. J. Appl. Phys., 45 [12] 9119-24 (2006).   DOI
24 D. R. Patil, R. C. Kambale, Y. Chai, W.-H. Yoon, D.-Y. Jeong, D.-S. Park, J.-W. Kim, J.-J. Choi, C.-W. Ahn, B.-D. Hahn, S. Zhang, K.-H. Kim, and J. Ryu, "Multiple Broadband Magnetoelectric Response in Thickness-controlled Ni/[011] $Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3$ Single Crystal/Ni Laminates," Appl. Phys. Lett., 103 [5] 052907 (2013).   DOI
25 H.-T. Oh, J.-Y. Lee, and H.-Y. Lee, "Mn-Modified PMN-PZT Single Crystals for High Power Piezoelectric Transducers," J. Korean Ceram. Soc., 54 [2] 1-8 (2017).   DOI
26 V. Annapureddy, M. Kim, H. Palneedi, H.-Y. Lee, S.-Y. Choi, W.-H. Yoon, D.-S. Park, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, J.-W. Kim, D.-Y. Jeong, and J. Ryu, "Low-Loss Piezoelectric Single-Crystal Fibers for Enhanced Magnetic Energy Harvesting with Magnetoelectric Composite," Adv. Energy Mater., 6 [24] 1601244 (2016).   DOI
27 D. R. Patil, Y. Zhou, J.-E. Kang, N. Sharpes, D.-Y. Jeong, Y.-D. Kim, K.-H. Kim, S. Priya, and J. Ryu, "Anisotropic Self-biased Dual-Phase Low Frequency Magneto-Mechano-Electric Energy Harvesters with Giant Power Densities," APL Mater., 2 [4] 046102 (2014).   DOI