• Title/Summary/Keyword: DEM(Digital Elevation Map)

Search Result 212, Processing Time 0.027 seconds

Study on Production of DEM Using Aerial Photo (항공사진을 이용한 DEM 제작에 관한 연구)

  • Park, Chung-Sun;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.105-120
    • /
    • 2018
  • This study estimates possibility and limitation on production of DEM using aerial photo by comparison of DEMs using aerial photo and digital map. Mountain and urban areas show higher elevation in DEM using aerial photo than in DEM using digital map, due to height of vegetation cover and buildings, respectively. However, artificial affects due to bridge, embankment and road construction are responsible for areas with higher elevation in DEM using digital map than in DEM using aerial photo. This difference in elevation between DEMs seems to be caused by rapid change in real elevation that is not reflected in digital map. There is little difference in elevation between DEMs in plain and area with little or no vegetation cover. This study suggests that problems associated with vegetation cover and error by GCP should be fixed, although DEM using aerial photo can quantitatively and 3-dimensionally reconstruct topography with a high resolution.

Generation of DEM Using Elevation and Accuracy Assessment of DEM (DEM병합을 통한 수치표고모델의 정확도 평가)

  • 김감래;곽강율;정해진;김명배
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.263-266
    • /
    • 2004
  • We make DEM of the area that elevation value varies rapidly by the aid. This study evaluates the accuracy and workability between the existing DEM making mathod by processing break line and the DEM absorption method by using the program like ARC TIN or AML. The object data of DEM generation is 1/5,000 digital map publicated by NGII and this study uses 100pieces of map as the criteria. We correct the error by Geoconv and generate DEM by using ARC TIN, ARC VIEW. Accuracy Evaluation accomplished by drawing 100 points from 1/5000 digital map.

  • PDF

3-D Positioning and DEM Generation from the IKONOS Stereo Images (IKONOS 입체영상을 이용한 3차원 위치 결정과 DEM 생성)

  • 지학송;안기원;박병욱;이건기;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.423-431
    • /
    • 2003
  • This study presents on generation coefficients of the RFM using GEO-level stereo images of the IKONOS satellite. 3-D positioning and DEM generation of this model on the test field. In result, the maximum error of image coordinates acquired by the upward transform of the RFM did nat exceed 8 pixels. DEM was generated with kriging interpolation extracted three dimensional ground coordinate to rational quadratic function form, me compared it to reference digital elevation model made from 1:5,000 digital map and 1:1,000 digital map, and so, could generate digital elevation model in the accuracy as average RMSE of elevation was ${\pm}$ 3∼5 m in RFM.

  • PDF

An Accuracy Analysis of the High Resolution Ortho Image by Generation Technique of Digital Elevation Model (수치고도모델 생성 기법에 따른 고해상도 정사영상 정확도 분석)

  • Lee, Kwang-Jae;Kim, Youn-Soo;Noh, Jin-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.118-125
    • /
    • 2012
  • The purpose of this study is to analyze the ortho image quality change according to the generation technique of Digital Elevation Model(DEM) based on the digital map. First of all, two different types of DEM were generated using contour layer(Case1), contour layer and altitude layer(Case2) from the digital map on the scale of 1/5,000. After generating and evaluating two types of DEM, KOMPSAT-2 ortho images were generated by using them. In conclusion, Case2 DEM was more effective to use in the slope and switchback area, on the other hand, Case1 DEM was much better than Case2 DEM for preventing a topographic distortion in flat area.

Accuracy Evaluation of ASTER DEM, SRTM DEM using Digital Topographic Map (1:5000 수치지형도를 이용한 ASTER DEM과 SRTM DEM의 구축정확도 평가)

  • Kang, Kyung-Ho;Kim, Chang-Jae;Sohn, Hong-Gyoo;Lee, Won-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.169-178
    • /
    • 2010
  • The main purpose of this study is to evaluate the feasibility and the accuracy of ASTER DEM and SRTM DEM covering 99% of the earth surface using large-scale Digital Topographic Map in mountainous area(Sokcho), mixed area(Jinan, mountainous area and even land area) and even land area(Anyang). We made DEM using contour lines of 1:5,000 Digital Topographic Map of study area and also acquired ASTER DEM and SRTM DEM of their corresponding area. In order to verify accuracy of DEM, this study compared ASTER DEM and SRTM DEM data using 15m resolution DEM generated from contour lines of Digital Topographic Map as basis for each study area. To evaluate the accuracy of ASTER and SRTM DEM data, statistical such as RMSE and correlation were calculated and histogram and scatter plot were drawn. The analysis result shows that, both ASTER DEM and SRTM DEM have high accuracy but in aspects of future availability, ASTER DEM covering larger areas bas relatively more potential than SRTM data.

A Study on the Construction Technique of DEM Using a Commercial Map (상용지도를 이용한 DEM 구성기법에 관한 연구)

  • 박성욱;최관순;강치우;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 1990
  • This paper presents a method of the constructing DEM(Digital Elevation Model) from the image data acquired from a commercial map using the scanner. Data acquistion, mark elimination, linking the broken line, elevation interpolation and 3D display processing are performed and the results are satisfatory.

Comparison and Evaluation on DEM Error by the Resolution of Airborne Laser Scanning Data (항공레이저 측량 자료의 해상도에 따른 DEM 오차 비교평가 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Chae, Hyo-Seok;Shin, Young-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.33-42
    • /
    • 2003
  • As airborne laser scanning technique is developed with high vertical accuracy recently, there come many studies on DEM(digital elevation model creation, building extraction, flood risk mapping and 3D virtual city modeling. This study applied point comparative method, contour comparative method and digital map with scale 1/5,000 to calculate RMSE of DEM in according to resolution that was constructed using rawdata being acquired by airborne laser scanning. As a result, point comparative method showed lower DEM standard error than contour comparative method, it is a reason that contour comparative method was not carried out detailed grid calculation for point comparative method. Also, digital map with scale 1/5,000 showed higher DEM standard error than point comparative method and contour comparative method in below 25.4m that is average horizontal distance among contour line, and showed similar result with contour comparative method in over 25.4m.

  • PDF

A Study on Making Map of Flood Using Digital Elevation Model (DEM) (수치표고모형 (DEM)을 이용한 침수재해 지도작성에 관한 연구)

  • Lim, Hyun Taek;Kim, Jae Hwi;Lee, Hak Beom;Park, Sung Yong;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • Recent floodplain data are important for river master plan, storm and flood damage reduction comprehensive plan and pre-disaster impact assessment. Hazard map, base of floodplain data, is being emphasized as important method of non-structural flood prevention and consist of inundation trace map, inundation expected map and hazard information map. Inundation trace map describes distribution of area that damaged from typhoons, heavy rain and tsunamis and includes identified flood level, flood depth and flood time from flooding area. However due to lack of these data by local government, which are foundational and supposed to be well prepared nationwide, having hard time for making inundation trace map or hazard information map. To overcome this problem, time consumption and budget reduction is required through various research. From this study, DEM (Digital Elevation Model) from image material from UAVS (Unmanned Aerial Vehicle System) and numeric geographic map from National Geographic Information Institute are used for calculating flooding damaged area and compared with inundation trace map. As results, inundation trace map DEM based on image material from UAVS had better accuracy than that used DEM based on numeric geographic map. And making hazard map could be easier and more accurate by utilizing image material from UAVS than before.

DEM Estimation Using Two Stage Stereo Matching Method (2단계 스테레오 정합기법을 이용한 DEM 추정)

  • Nam, Chang-Woo;Woo, Dong-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.12
    • /
    • pp.659-666
    • /
    • 2000
  • A stereo matching has been an important tool for reconstructing three dimensional terrain. By using stereo matching technique, DEM(Digital Elevaton Map) can be generated by the disparity from a reference image to a target image. Generally disparity map can be evaluated by matching the reference image to the target image and if the role of the reference and the target are interchanged, a different DEM can be obtained. In this paper, we propose a new fusion technique to estimate the optimal DEM by eliminating the false DEM due to occlusion. To detect the false DEM, we utilize two measure of accuracy: self-consistency and cross-correlation score. We test the effectiveness of the proposed methods with a quantitative analysis using simulated images. Experimental result indicate that the proposed methods show 24.4% and 33.1% improvement over either DEM.

  • PDF

Updating of Digital Map using Digital Image and LIDAR (디지털 영상과 LIDAR 자료를 이용한 수치지도 갱신)

  • Yun, Bu-Yeol;Hong, Jung-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.87-97
    • /
    • 2006
  • LIDAR(Light Detection and Ranging) is a new technology for obtaining DEM(Digital Elevation Model)ewith high density and high point acuracy. As LIDAR emerged, DEM could be developed in the earthsurface more efficiently and more economically, compared to the conventional aerial photogrametry.In this study, a digital camera is simultaneously used in combined LIDAR surveying, and acquired digitial image and DEM produce digital orthoimage. In this process, methods of combining sensor andorthoimage, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; onewith a few GCP and the other without them. The produced maps can be used to corect or revised1:1,000 or 1:5,000 scale maps acordingly.

  • PDF