• 제목/요약/키워드: DEFAULT PREDICTION

검색결과 60건 처리시간 0.022초

Default Prediction for Real Estate Companies with Imbalanced Dataset

  • Dong, Yuan-Xiang;Xiao, Zhi;Xiao, Xue
    • Journal of Information Processing Systems
    • /
    • 제10권2호
    • /
    • pp.314-333
    • /
    • 2014
  • When analyzing default predictions in real estate companies, the number of non-defaulted cases always greatly exceeds the defaulted ones, which creates the two-class imbalance problem. This lowers the ability of prediction models to distinguish the default sample. In order to avoid this sample selection bias and to improve the prediction model, this paper applies a minority sample generation approach to create new minority samples. The logistic regression, support vector machine (SVM) classification, and neural network (NN) classification use an imbalanced dataset. They were used as benchmarks with a single prediction model that used a balanced dataset corrected by the minority samples generation approach. Instead of using prediction-oriented tests and the overall accuracy, the true positive rate (TPR), the true negative rate (TNR), G-mean, and F-score are used to measure the performance of default prediction models for imbalanced dataset. In this paper, we describe an empirical experiment that used a sampling of 14 default and 315 non-default listed real estate companies in China and report that most results using single prediction models with a balanced dataset generated better results than an imbalanced dataset.

Default Prediction of Automobile Credit Based on Support Vector Machine

  • Chen, Ying;Zhang, Ruirui
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.75-88
    • /
    • 2021
  • Automobile credit business has developed rapidly in recent years, and corresponding default phenomena occur frequently. Credit default will bring great losses to automobile financial institutions. Therefore, the successful prediction of automobile credit default is of great significance. Firstly, the missing values are deleted, then the random forest is used for feature selection, and then the sample data are randomly grouped. Finally, six prediction models of support vector machine (SVM), random forest and k-nearest neighbor (KNN), logistic, decision tree, and artificial neural network (ANN) are constructed. The results show that these six machine learning models can be used to predict the default of automobile credit. Among these six models, the accuracy of decision tree is 0.79, which is the highest, but the comprehensive performance of SVM is the best. And random grouping can improve the efficiency of model operation to a certain extent, especially SVM.

스트레스 테스트를 활용한 해운기업 안정성 연구 (Stress Test on a Shipping Company's Financial Stability)

  • 박성화;권장한
    • 한국항만경제학회지
    • /
    • 제39권2호
    • /
    • pp.97-110
    • /
    • 2023
  • 본 연구는 거시경제 충격이 우리나라 해운기업 안정성에 미치는 영향을 분석하였다. 우리나라 해운기업의 부실 발생 빈도가 상대적으로 적다는 점을 고려하여 퍼스로짓모형을 통해 해운기업의 부실 확률을 추정하였다. 부실 예측모형 추정 결과, 총자산은 부실 확률과 음의 상관관계를 지닌 것으로 나타난 한편, 총부채는 부실 확률과 유의한 양의 상관관계가 있는 것을 확인할 수 있었다. 부실 예측모형 추정결과를 바탕으로 총매출, 총자산 및 총부채 충격이 해운기업 부실 확률에 미치는 영향을 스트레스 테스트하였다. 스트레스 테스트 결과, 매출 및 총자산 감소는 해운기업의 재무 안정성을 크게 악화시키는 것을 확인할 수 있었다.

TeGCN:씬파일러 신용평가를 위한 트랜스포머 임베딩 기반 그래프 신경망 구조 개발 (TeGCN:Transformer-embedded Graph Neural Network for Thin-filer default prediction)

  • 김성수;배준호;이주현;정희주;김희웅
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.419-437
    • /
    • 2023
  • 국내 씬파일러(Thin Filer)의 수가 1200만명을 넘어서며, 금융 업계에서 씬파일러의 신용을 정확히 평가하여 우량고객을 선별해 대출을 공급하는 시도가 많아지고 있다. 특히, 차주의 신용정보에 존재하는 비선형성을 반영하여 채무불이행을 예측하기 위해서 다양한 머신러닝 알고리즘을 활용한 연구가 진행되고 있다. 그 중 그래프 신경망 구조(Graph Neural Network)는 일반적인 신용정보 외에 대출자 간의 네트워크 정보를 반영할 수 있다는 점에서 데이터가 부족한 씬파일러의 채무 불이행 예측에서 주목할 만하다. 그러나, 그래프 신경망을 활용한 기존의 연구들은 신용정보에 존재하는 다양한 범주형 변수를 적절히 처리하지 못했다는 한계가 있었다. 이에 본 연구는 범주형 변수의 맥락적 정보를 추출할 수 있는 트랜스포머 메커니즘(Transformer mechanism)과 대출자 간 네트워크 정보를 반영할 수 있는 그래프 합성곱 신경망(Graph Convolutional Network)를 결합하여 효과적으로 씬파일러의 채무 불이행 예측이 가능한 TeGCN (Transformer embedded Graph Convolutional Network)를 제안한다. TeGCN는 일반 대출자 데이터셋과 씬파일러 데이터셋에 대하여 모두 베이스 라인 모델 대비 높은 성능을 보였으며, 특히 씬파일러 채무 불이행 예측에 우수한 성능을 달성했다. 본 연구는 범주형 변수가 많은 신용정보와 데이터가 부족한 씬파일러의 특성에 적합한 모델 구조를 결합하여 높은 채무 불이행 예측 성능을 달성했다는 시사점이 있다. 이는 씬파일러의 금융소외문제를 해결하고 금융업계에서 씬파일러를 대상으로 추가적인 수익을 창출하는데 기여할 수 있을 것이다.

유통업체의 부실예측모형 개선에 관한 연구 (Performance Evaluation and Forecasting Model for Retail Institutions)

  • 김정욱
    • 유통과학연구
    • /
    • 제12권11호
    • /
    • pp.77-83
    • /
    • 2014
  • Purpose - The National Agricultural Cooperative Federation of Korea and National Fisheries Cooperative Federation of Korea have prosecuted both financial and retail businesses. As cooperatives are public institutions and receive government support, their sound management is required by the Financial Supervisory Service in Korea. This is mainly managed by CAEL, which is changed by CAMEL. However, NFFC's business section, managing the finance and retail businesses, is unified and evaluated; the CAEL model has an insufficient classification to evaluate the retail industry. First, there is discrimination power as regards CAEL. Although the retail business sector union can receive a higher rating on a CAEL model, defaults have often been reported. Therefore, a default prediction model is needed to support a CAEL model. As we have the default prediction model using a subdivision of indexes and statistical methods, it can be useful to have a prevention function through the estimation of the retail sector's default probability. Second, separating the difference between the finance and retail business sectors is necessary. Their businesses have different characteristics. Based on various management indexes that have been systematically managed by the National Fisheries Cooperative Federation of Korea, our model predicts retail default, and is better than the CAEL model in its failure prediction because it has various discriminative financial ratios reflecting the retail industry situation. Research design, data, and methodology - The model to predict retail default was presented using logistic analysis. To develop the predictive model, we use the retail financial statements of the NFCF. We consider 93 unions each year from 2006 to 2012 to select confident management indexes. We also adapted the statistical power analysis that is a t-test, logit analysis, AR (accuracy ratio), and AUROC (Area Under Receiver Operating Characteristic) analysis. Finally, through the multivariate logistic model, we show that it is excellent in its discrimination power and higher in its hit ratio for default prediction. We also evaluate its usefulness. Results - The statistical power analysis using the AR (AUROC) method on the short term model shows that the logistic model has excellent discrimination power, with 84.6%. Further, it is higher in its hit ratio for failure (prediction) of total model, at 94%, indicating that it is temporally stable and useful for evaluating the management status of retail institutions. Conclusions - This model is useful for evaluating the management status of retail union institutions. First, subdividing CAEL evaluation is required. The existing CAEL evaluation is underdeveloped, and discrimination power falls. Second, efforts to develop a varied and rational management index are continuously required. An index reflecting retail industry characteristics needs to be developed. However, extending this study will need the following. First, it will require a complementary default model reflecting size differences. Second, in the case of small and medium retail, it will need non-financial information. Therefore, it will be a hybrid default model reflecting financial and non-financial information.

준지도학습 기반의 P2P 대출 부도 위험 예측에 대한 연구 (Semi-Supervised Learning to Predict Default Risk for P2P Lending)

  • 김현정
    • 디지털융복합연구
    • /
    • 제20권4호
    • /
    • pp.185-192
    • /
    • 2022
  • 본 연구는 P2P(Peer-to-Peer) 대출의 부도위험 예측을 위하여 준지도학습(SSL) 기반의 모델을 개발하고자 한다. 검증된 성능에도 불구하고 지도학습(SL) 방법은 완전 지불 또는 채무불이행과 같이 레이블이 결정된 다수의 데이터가 필요한데 충분한 수의 레이블 데이터를 수집하려면 많은 자원과 시간이 필요하다. P2P 플랫폼이 급성장하면서 대출 건수도 매해 급증하였고, 레이블이 없는 데이터도 지속적으로 증가하고 있다. 본 연구는 P2P 대출 플랫폼인 LendingClub에서 수집한 데이터를 사용하였다. P2P 대출 중 레이블이 결정된 대출에서 추출한 정보뿐만 아니라 레이블이 결정되지 않은 대출에서 추출한 정보도 사용하여 부도 위험을 예측하는 SSL 모델을 개발하여 연구를 수행한 결과, 적은 수의 레이블이 결정된 데이터를 사용함에도 불구하고 SSL 방법으로 구축된 모델이 많은 수의 레이블이 결정된 데이터를 사용하여 학습시킨 SL 방법으로 구축된 모델보다 부도 위험 예측성과가 향상되었다.

개인사업자 부도율 예측 모델에서 신용정보 특성 선택 방법 (The Credit Information Feature Selection Method in Default Rate Prediction Model for Individual Businesses)

  • 홍동숙;백한종;신현준
    • 한국시뮬레이션학회논문지
    • /
    • 제30권1호
    • /
    • pp.75-85
    • /
    • 2021
  • 본 논문에서는 개인사업자 부도율을 보다 정확하게 예측하기 위한 새로운 방법으로 개인사업자의 기업 신용 및 개인 신용정보를 가공, 분석하여 입력 특성으로 활용하는 심층 신경망기반 예측 모델을 제시한다. 다양한 분야의 모델링 연구에서 특성 선택 기법은 특히 많은 특성을 포함하는 예측 모델에서 성능 개선을 위한 방법으로 활발히 연구되어 왔다. 본 논문에서는 부도율 예측 모델에 이용된 입력 변수인 거시경제지표(거시변수)와 신용정보(미시변수)에 대한 통계적 검증 이후 추가적으로 신용정보 특성 선택 방법을 통해 예측 성능을 개선하는 특성 집합을 확인할 수 있다. 제안하는 신용정보 특성 선택 방법은 통계적 검증을 수행하는 필터방법과 다수 래퍼를 결합 사용하는 반복적·하이브리드 방법으로, 서브 모델들을 구축하고 최대 성능 모델의 중요 변수를 추출하여 부분집합을 구성 한 후 부분집합과 그 결합셋에 대한 예측 성능 분석을 통해 최종 특성 집합을 결정한다.

Financial Distress Prediction Using Adaboost and Bagging in Pakistan Stock Exchange

  • TUNIO, Fayaz Hussain;DING, Yi;AGHA, Amad Nabi;AGHA, Kinza;PANHWAR, Hafeez Ur Rehman Zubair
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.665-673
    • /
    • 2021
  • Default has become an extreme concern in the current world due to the financial crisis. The previous prediction of companies' bankruptcy exhibits evidence of decision assistance for financial and regulatory bodies. Notwithstanding numerous advanced approaches, this area of study is not outmoded and requires additional research. The purpose of this research is to find the best classifier to detect a company's default risk and bankruptcy. This study used secondary data from the Pakistan Stock Exchange (PSX) and it is time-series data to examine the impact on the determinants. This research examined several different classifiers as per their competence to properly categorize default and non-default Pakistani companies listed on the PSX. Additionally, PSX has remained consistent for some years in terms of growth and has provided benefits to its stockholders. This paper utilizes machine learning techniques to predict financial distress in companies listed on the PSX. Our results indicate that most multi-stage mixture of classifiers provided noteworthy developments over the individual classifiers. This means that firms will have to work on the financial variables such as liquidity and profitability to not fall into the category of liquidation. Moreover, Adaptive Boosting (Adaboost) provides a significant boost in the performance of each classifier.

정책자금지원 부실예측 모형 연구 (Study on Default Prediction Model of Policy Fund)

  • 임상섭
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.713-714
    • /
    • 2021
  • 소상공인은 우리나라 경제의 중요한 역할을 하는 경제적 근간이루고 있지만 상대적으로 영세하고 경영여건이 불안하다. 정부정책적인 자금지원이 필요하나 재원의 한계로 효율적인 자본분배가 필요하다. 따라서 본 논문은 랜덤포레스트 모형을 활용하여 소상공인 정책자금 대출에 관한 부실예측모형을 개발함으로써 부실징후를 사전에 파악하고 예방함으로써 사회적비용을 절감하고 자원의 효율적 분배에 기여하고자 한다.

  • PDF

인공지능기법을 이용한 온라인 P2P 대출거래의 채무불이행 예측에 관한 실증연구 (Artificial Intelligence Techniques for Predicting Online Peer-to-Peer(P2P) Loan Default)

  • 배재권;이승연;서희진
    • 한국전자거래학회지
    • /
    • 제23권3호
    • /
    • pp.207-224
    • /
    • 2018
  • 온라인 P2P 대출(Online Peer-to-Peer Lending)이란 대출자(차입자)들이 인터넷 및 모바일 P2P 플랫폼을 통해 대출을 신청하면 P2P 플랫폼 기업이 이를 심사하고, 공개하여 불특정 다수가 자금을 빌려주고 이자를 받는 대출중개 서비스를 말한다. 국내외적으로 P2P 대출시장의 성장과 수익률에 대한 관심이 커진 상황에서 현재는 P2P 대출에 대한 안정성 측면에서 문제가 제기되고 있다. P2P 대출시장은 높은 수익률을 제공하지만 P2P 업체의 연체율과 부실률(채무불이행률)도 함께 높아지고 있는 실정이다. P2P 금융시장의 신뢰도를 높이기 위해서는 P2P 대출의 연체율과 채무불이행률을 줄이는 것이 무엇보다 중요하다. 본 연구는 세계적인 P2P 기업인 렌딩클럽(Lending Club)의 P2P 대출거래데이터베이스를 이용하여 인공지능기반의 P2P 채무불이행 예측모형을 구축하고자 한다. 구체적으로 벤치마크(benchmark) 모형으로 통계기법인 판별분석과 로지스틱 회귀분석을 이용하고, 인공지능기법으로는 신경망, CART, 그리고 C5.0을 이용하여 P2P 대출거래의 채무불이행 예측모형을 구축하고자 한다. 연구결과, P2P 대출거래의 채무불이행 예측을 위해 우선 고려해야 할 변수는 대출이자율이며, 중요도 3순위에 가장 많이 언급된 대출금액과 총부채상환비율도 고려해야 할 요인으로 추출되었다. 전통적인 통계기법보다는 인공지능기법의 예측성과가 더 좋은 것으로 나타났으며, 신경망의 경우 모든 데이터 셋에서 오분류율이 가장 낮은 예측모형으로 나타났다.