This paper introduces quantitative tools for evaluating the relative efficiency of Career & Counseling Jobs in universities. As tools, it uses Data Envelopment Analysis (DEA) developed by Charnes and Cooper. It finally selects 29 DMUs which are listed on the Ministry Of Education, Science And Technology(http://academyinfo.go.kr). We measures the technical efficiency of each DMU with the use of DEA-CRS, rather then DEA-VRS because DEA-CRS not only compares relative efficiencies but also implicitly considers economies of scale based on the assumption of linearity. We run a linear programming model Frontier Analyst Program for the estimation of the relative efficiencies of each DMU. The model also indicates the precise amount of inefficiencies for each input, which mean how much inputs are wasted for a given output and how much the university is inefficiently operated. This analysis helps to give guideline for the organization to construct a futureoriented operational strategy and also to show clear picture of contents of mismanagement for the past. The details of mismanagement are to be identified, analysed and finally corrected.
This study estimated the technical efficiency of coastal composite fishery in Korea by using the data envelopment analysis (DEA) and the stochastic frontier analysis (SFA) methods, and the results on the respective method were compared. In the DEA method, the constant returns to scale (CRS) and the variable returns to scale (VRS) output-oriented DEA models were separated and technical efficiencies were estimated, respectively. The average estimated value of technical efficiency by the SFA method (0.633) was found to be lower than that by the VRS-DEA method (0.738), while it was higher than that by the CRS-DEA method (0.479). It was found that strong correlation exists between the SFA method and the VRS-DEA method. The method which can utilize both methods in mutually complementing way for the estimation of technical efficiency was also considered.
This paper empirically analyzed the factors of operational efficiency after the quasi-public bus operating system in Busan Metropolitan City. DEA analysis result, for CRS the annual efficiency in 2010 of bus routes that can be transferred to subway lines 1 was the highest. The annual efficiency of bus routes that can be transferred to subway lines 2 shows the largest annual average of 0.923 in 2016 under the CRS average gradually improved over the year. Annual efficiency of subway lines No. 3 and transferable bus routes gradually improved from 2009 to 2015, but declined again in 2016. Among 536 routes for four years on 134 routes per year, 205 routes were found to be inefficient. In order to increase efficiency of the 205 routes, it is suggested that the number of routes should be reduced. In addition, the analysis results on DEA using the Tobit calibration, the most significant factors affecting the operational efficiency index were the time taken, followed by the number of passengers and the number of passengers transferred.
This study measures the managerial efficiency of Korea's 14 public enterprises using bootstrap DEA in 2013. In addition, it examines the factors that affect on the bootstrap bias-corrected efficiency using truncated regression analysis. The results and implications of this study are as follows. First, using bootstrap DEA model analysis, the results showed that the mean technical efficiency was 0.3182, the mean pure technical efficiency was 0.4994 and the mean scale efficiency was 0.6585. The main cause of technical inefficiency was due to pure technical inefficiency. Second, rank test between technical efficiency of general DEA model and bootstrap DEA model was no significant difference under CRS and VRS assumption. Third, the main cause of the inefficiency in 11 DMUs among 14 DMUs were mainly due to the pure technology and three DMUs were because of the scale efficiency. Finally, in the truncated regression analysis, cost of labor, profit, sales, return of equity, and the number of employees appeared as factors affecting the scale efficiency at the 10% significance level.
This study compares the most widely used parametric and non-parametric techniques to measure cost and profit efficiency of banks, namely the Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA). We formulate the specification form of both stochastic cost and profit frontier models and constant return to scale Cost DEA and Profit DEA models and provide an empirical assessment of the cost and profit frontiers based on a panel dataset of National Commercial Banks (NCBs) and Private Banks (PBs) in Bangladesh over the 2001-2010 period. The cost inefficiency and profit efficiency are slightly higher for PBs than NCBs in case of both SFA and DEA. The coefficients of advance and off-balance sheet items are significant that positively influence the banks in stochastic cost frontier model while the advance, other earning assets, price of borrowed fund are significant and negative effects on the banks in stochastic profit frontier model. The average cost inefficiency and average profit efficiency are recorded with 16.3% and 91% respectively. The highest and lowest cost inefficiency are observed for Janata Bank and United Commercial Bank Limited whilst the highest and lowest profit efficiency are recorded for Eastern Bank Limited and Janata Bank respectively. The average technical and allocative efficiency are 68.8% and 35.9%, respectively in case of CRS cost-DEA model whereas they are 70.3% and 31.8% in case of CRS profit-DEA model. The average cost inefficiency is recorded 6.3% by SFA whereas it is 24.5% by DEA. The average profit efficiency is found 91% by SFA while it is 22.1% by DEA, and SFA method shows better bank efficiency than DEA.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.12
/
pp.8719-8727
/
2015
The purpose of this study is to examine the production efficiency of Rose farm and to explain the factors of the inefficiency. To analysis the production efficiency, SFA(Stochastic Frontier Analysis) and DEA(Data Envelopment Analysis) methods are measured, and then, Tobit regression model is used to analysis the influential factors on the production efficiency. As a result, first, the production efficiency by SFA is 88.4%, and by DEA, results are 78.5% and 85.2% in the CRS and VRS model, respectively. In particular, the production efficiency of the measurement results of the two methods are complementary, it is described in the same order of efficiency of each management body. Second, the results of tobit model shows that 6 input-factors are significant, and seed/nursery and material costs, which have the largest regression coefficient value and positive effect on production efficiency, are the most influential factors. Therefore, the results of this study indicates Rose farm can enhance their management efficiency by increasing amount of the seed/nursery and material costs.
Due to the growth of container traffic and port competition, ports have increasingly been under pressure to improve their efficiency in port operation and port management for competitive edge. The purpose of this study is to compare the technical efficiency among major container terminals in China, Korea and Singapore using Data Envelopment Analysis (DEA). This paper analyses the returns-to-scale using the output orientation of VRS and CRS model. The benefits of this study examining the relative performance of container terminals will enable container terminal operating companies or port policy makers in those countries to identify current slacks and to set up a proper port management and operation plan to improve their productivity.
This study aims to provide power generating plants with eco-efficiency information. To implement the purposes, of study, both DEA(Data, Envelopment Analysis) model and interview were incorporated in terms of methodologies. To analyze the managerial efficiency, total labor cost and number of employees were considered as input factors. CO2, NOx, and water also were considered as input factors to analyze eco-efficiency. Both annual total power product and annual total revenue were used as output factors. CRS(Constant Return to Scale) and VRS(Variable Return to) model were facilitated in this analysis. According to the findings, most of the power plants were evaluated as 'Efficient'' taking into consideration of average value, both 0.928 from CCR model and 0.969 from VRS model. 7 DMUs including DMU3 and DMU12 are efficient out of 35 DMUs relatively, other DMUs are inefficient. For results of inefficient output factors distribution, it was found that inefficiency for NOx was marked relatively higher than CO2. In order to improve the eco-efficiency in the power plants in the long term, the target amount of Co2 as well as NOx reduction needs to be properly proposed in consideration of particularity of power plants. In the long run, renewable energy, alternative fuels should be adapted to reduce the eco-inefficient.
The present study has aimed at analyzing the technical and scale efficiencies of credit utilization by the farmer-borrowers in Chittoor district of Andhra Pradesh, India. DEA approach was followed to analyze the credit utilization efficiency and to analyze the factors influencing the credit utilization efficiency, log-linear regression analysis was attempted. DEA analysis revealed that, the number of farmers operating at CRS are more in number in marginal farms (40%) followed by other (35%) and small (17.5%) farms. Regarding the number of farmers operating at VRS, small farmers dominate the scenario with 72.5 per cent followed by other (67.5%) and marginal (42.5%) farmers. With reference to scale efficiency, marginal farmers are in majority (52.5%) followed by other (47.5%) and small (25%) farmers. At the pooled level, 26.7 per cent of the farmers are being operated at CRS, 63 per cent at VRS and 32.5 per cent of the farmers are either performed at the optimum scale or were close to the optimum scale (farms having scale efficiency values equal to or more than 0.90). Nearly 58, 15 and 28 percents of the farmers in the marginal farms category were found operating in the region of increasing, decreasing and constant returns respectively. Compared to marginal farmers category, there are less number of farmers operating at CRS both in small farmers category (15%) and other farmers category (22.5%). At the pooled level, only 5 per cent of the farmers are operating at DRS, majority of the farmers (73%) are operating at IRS and only 22 per cent of the farmers are operating at CRS indicating efficient utilization of credit. The log-linear regression model fitted to analyze the major determinants of credit utilization (technical) efficiency of farmer-borrowers revealed that, the three variables viz., cost of cultivation and family expenditure (both negatively influencing at 1% significant level) and family income (positively influencing at 1% significant level) are the major determinants of credit utilization efficiency across all the selected farmers categories and at pooled level. The analysis further indicate that, escalation in the cost of cultivation of crop enterprises in the region, rise in family expenditure and prior indebtedness of the farmers are showing adverse influence on the credit utilization efficiency of the farmer-borrowers.
This study presumes the efficiency of each route by utilizing data of Seoul's exclusive bus routes for the 2008 and the DEA model. In the estimation, it is assumed that the number of passengers and profits of each route is calculated by considering the number of buses and stops, travel distance, intervals and management cost. This study computed the efficiency scores of each bus line in Seoul based on the data for the first half of 2008 and one of the DEA models, namely the BCC model. After analysis using the input-oriented BCC model, out of a total of 18 lines of interest, there were 2 CRS lines and 16 IRS lines. Also, the Tobit Regression Analysis that helps identify the impact of the elements used in the analysis on efficiency scores proved that the most influential element to exclusive buses is the length of intervals.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.