• Title/Summary/Keyword: DC-link voltage variation

Search Result 49, Processing Time 0.018 seconds

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

Development of the Bidirectinal DC-DC Converter Control Algorithm for Hybrid Electric Vehicles (하이브리드 전기자동차용 양방향 DC-DC Converter제어 알고리즘 개발)

  • Oh Doo-Yong;Gu Bon-Gwan;Nam Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.346-349
    • /
    • 2004
  • The design of DC-DC converters for power electronic interfaces in power management systems for Hybrid Electric Vehicle (HEV) is a very challenging task. In this paper, the considered topology is the hi-directional buck-boost converter and inverter system. If we make the converter side DC link current the same as the inverter side DC link current in a converter-inverter system, no current will flow through the BC link capacitor and as a result, no DC link voltage variation occurs. This leads to the possibility of reducing small th size of DC link capacitors which are expensive, bulky. Therefore we propose the converter current controller which can manage to match inverter and converter current at the DC link.

  • PDF

PWM Converter Control considering time varying source voltage (Time Varying 전원 전압을 고려한 PWM 컨버터 제어)

  • 주인원;임선경;남광희
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.692-695
    • /
    • 1999
  • A new control scheme is proposed suitable for the three phase PWM converter having abrupt load variation such as a crane. In the converter used in a crane, the peak value of source voltage varies instantaneously due to the abrupt load variations. Such a voltage variation degrades the performance of DC-link control of PWM converter. To overcome this problem, load variations should be detected and compensated properly. We propose a new method for detecting and compensating the load variations without the additional hardware. With the proposed scheme, load variations are detected by estimating the current of DC-link capacitor. The estimated current information is feedbacked to a current controller to improve the performance. Additionally, the variation of source voltage is compensated using feedforward controller. The performance of the proposed scheme has been verified through simulations.

  • PDF

Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation (입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법)

  • Sun, Daun;Jung, Jae-Hun;Nho, Eui-Cheol;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.

DC Link Voltage Controller for Three Phase Vienna Rectifier with Compensated Load Current and Duty (부하 전류 및 듀티를 보상한 3상 비엔나 정류기의 출력 전압 제어 기법)

  • Lee, Seung-Tae;Lim, Jae-Uk;Kim, Hag-Wone;Cho, Kwan-Yuhl;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • A new dc link voltage controller for a three-phase Vienna rectifier is proposed in this study. This method uses load current and duty information to control dc link voltage. The load current affects the capacitor current and varies the output voltage. Existing methods do not perfectly consider the load current. By considering load current with duty compensation in the proposed method, the transient response is improved by the load variation regardless of the input voltage. The effectiveness of the proposed method is compared with other control methods when the load changes rapidly using PSIM simulation and experiment.

Seamless Transfer Method of MPPT for Two-stage Photovoltaic PCS (태양광 발전 시스템의 무순단 MPPT 운전 모드 절체 기법)

  • Park, Jong-Hwa;Jo, Jongmin;An, Hyunsung;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.233-238
    • /
    • 2018
  • This paper proposes a seamless MPPT operation mode transfer method of photovoltaic system. The photovoltaic system consists of a DC-DC boost converter, a DC-Link, and a 3-level neutral point clamp (NPC) type inverter. The PV voltage fluctuates due to the output characteristics of the solar pane1 depending on the irradiation amount and the temperature. The photovoltaic system requires seamless MPPT mode transfer method that the discontinuity does not occur in order to supply the stable power to system without affecting the fluctuation of the PV voltage. MPPT operation is divided into two modes by the voltage reference. Under the condition that the PV voltage is below 650V, the DC-DC boost converter performs MPPT through duty control based on perturb & observe (P&O) method, and the inverter conducts DC-link voltage and grid current controls in synchronous reference frame. On the other hand, when the PV voltage exceeds above 650V, inverter performs MPPT in accordance with the variation of DC-link voltage control while the converter stops operating. Two MPPT operation modes is smoothly transferred through the proposed method that DC-link voltage or grid current commands are appropriately adjusted from the certain criteria. The feasibility of the MPPT operation mode transfer method is verified using a 10kW solar photovoltaic system, experimental results have good performances that the fluctuation of PV current is reduced to 100%.

Reduction of DC-Link Voltage Ripple of Three-phase AC/DC Converter for Uninterruptible Power Supply by Applying Fuel Cell (연료전지를 적용한 무정전전원장치용 3상 AC/DC 컨버터의 DC-Link 전압 리플 저감)

  • Park, Jin-Ho;Kim, Kyung-Min;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.43-51
    • /
    • 2010
  • Conventional UPS(Uninterruptible Power Supply) using batteries for assisting the source is limited by the large volume and the life-time of battery. Moreover, voltage variation caused by the sudden load variation brings the problems on UPS system output. In this paper, the battery using fuel cell which is environment-friendly alternative energy is connected on AC/DC converter for UPS to compensate the sudden load variation energy and make the stable power.

DC-Voltage Regulation for Solar-Variable Speed Hybrid System (태양광 기반의 가변속 하이브리드 시스템을 위한 직류 전압 제어)

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho;Song, Yujin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • Recently, the interest in DC systems to achieve more efficient connection with renewable energy sources, energy storage systems, and DC loads has been growing extensively. DC systems are more advantageous than AC systems because of their low conversion losses. However, the DC-link voltage is variable during operation because of different random effects. This study focuses on DC voltage stabilization applied in stand-alone DC microgrids by means of voltage ranges, power management, and coordination scheme. The quality and stability of the entire system are improved by keeping the voltage within acceptable limits. In terms of optimized control, the maximum power should be tracked from renewable resources during different operating modes of the system. The ESS and VSDG cover the power shortage after all available renewable energy is consumed. Keeping the state of charge of the ESS within the allowed bands is the key role of the control system. Load shedding or power generation curtailment should automatically occur if the maximum tolerable voltage variation is exceeded. PSIM-based simulation results are presented to evaluate the performance of the proposed control measures.

New Control Seheme for AC-DC-AC Converters without DC Link Electrolytic Capacitor (직류링크 전해커패시터 없는 AC-DC-AC 컨버터 재어에 관한 연구)

  • 김준석;설승기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.397-408
    • /
    • 1994
  • In this paper, a novel concept for a static three-phase to three-phase power converter for an AC drive with a unity power factor and reduced harmonics on the utility line is presented. The power circuit consists of two back-to-back connected six-pulse bridges having only a $\mu$F ceramic capacitor in the DC link. By controlling the active kpower balance between two bridges, the DC link voltage can be maintained within 20V deviation from the nominal value with the small ceramic capacitors regardless of the load variation even in the unbalanced source condition.

  • PDF

A Simple Capacitance Estimation Method for Failure Diagnosis of DC Link Electrolytic Capacitor in Power Converters (전력변환기에 대한 직류링크 커패시터의 고장진단을 위한 간단한 용량 추정 기법)

  • Shon, Jin-Geun;Kim, Dong-Joon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.378-383
    • /
    • 2010
  • Due to the large capacity and low cost, DC link electrolytic capacitors with of energy storage and voltage regulation are used for almost all types of power converter as the DC/AC inverter or DC/DC converter. Electrolytic capacitor, which is the most of the time affected by the aging effect, plays very important role for the power converter system quality and reliability. Therefore, this paper proposes a simple method to estimate the capacitance variation of an electrolytic capacitor in order to analyze the internal characteristic decrease and worn-out state of an electrolytic capacitor. Simulation results by using capacitor storage energy computation show the validity of the proposed capacitance estimation method.