• Title/Summary/Keyword: DC-DC buck converter

Search Result 389, Processing Time 0.024 seconds

Development of the Bidirectinal DC-DC Converter Control Algorithm for Hybrid Electric Vehicles (하이브리드 전기자동차용 양방향 DC-DC Converter제어 알고리즘 개발)

  • Oh Doo-Yong;Gu Bon-Gwan;Nam Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.346-349
    • /
    • 2004
  • The design of DC-DC converters for power electronic interfaces in power management systems for Hybrid Electric Vehicle (HEV) is a very challenging task. In this paper, the considered topology is the hi-directional buck-boost converter and inverter system. If we make the converter side DC link current the same as the inverter side DC link current in a converter-inverter system, no current will flow through the BC link capacitor and as a result, no DC link voltage variation occurs. This leads to the possibility of reducing small th size of DC link capacitors which are expensive, bulky. Therefore we propose the converter current controller which can manage to match inverter and converter current at the DC link.

  • PDF

Simultaneous Control of DC-DC Converter by DSP Digital Controller (DSP 디지털 제어기법에 의한 DC-DC 컨버터의 동시제어)

  • Park, Hyo-Sik;Kim, Hui-Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.609-614
    • /
    • 2001
  • This paper presents a multi output converter system that controls, simultaneously and independently, the separate Buck converter and Boost converter with the different specification by one DSP digital controller. As two separate converters are regulated by only one DSP, it is possible to achieve the simple digital control circuit for regulating multi output DC-DC converter. By setting the software switch state, PI and Fuzzy controller can be applied as a controller for each converter without any change of hardware. Also, it is included the control characteristics comparison between PI and Fuzzy controller. The control characteristics of each PWM DC-DC converter is validated by experimental results.

  • PDF

Comparisom of Control Algorithm for Simultaneous Control of DC-DC Converter (DC-DC 컨버터 동시제어의 제어 알고리즘 비교)

  • Park, Hyo-Sik;Han, Woo-Yong;Lee, Gong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.163-168
    • /
    • 2002
  • This paper presents the comparison results of control algorithm for the simultaneous control of a multi output converter system that controls, simultaneously and independently, the separate Buck converter and Boost converter with the different specification by one DSP digital controller. As two separate converters are regulated by only one DSP, it is possible to achieve the simple digital control circuit for regulating the multi output DC-DC converter. By setting the software switch state, PI and Fuzzy controller can be applied as a controller for each converter without any change of hardware. Also, it is included the control characteristics comparison between PI and Fuzzy controller. The control characteristics of each PWM DC-DC converter is validated by experimental results.

Implementation of DC/DC Power Buck Converter Controlled by Stable PWM (안정된 PWM 제어 DC/DC 전력 강압 컨버터 구현)

  • Lho, Young-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.371-374
    • /
    • 2012
  • DC/DC switching power converters produce DC output voltages from different stable DC input sources regulated by a bi-polar transistor. The converters can be used in regenerative braking of DC motors to return energy back in the supply, resulting in energy savings for the systems containing frequent stops. The voltage mode DC/DC converter is composed of a PWM (Pulse Width Modulation) controller, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an inductor, and capacitors, etc. PWM is applied to control and regulate the total output voltage. It is shown that the output of DC/DC converter depends on the variation of threshold voltage at MOSFET and the variation of pulse width. In the PWM operation, the missing pulses, the changes in pulse width, and a change in the period of the output waveform are studied by SPICE (Simulation Program with Integrated Circuit Emphasis) and experiments.

A PV Module-Integrated DC-DC Converter for EV (전기 자동차용 태양광 모듈 통합 DC-DC 컨버터)

  • Hwang, Yunkyung;Nam, Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.198-199
    • /
    • 2019
  • 이 논문에서 제안하고자 하는 컨버터는 태양광 모듈이 결합된 Phase-shifted Full-bridge(PSFB) 컨버터이다. 기존 전기자동차의 전력변환 시스템에는 고전압 배터리와 저전압 배터리간 전력전달을 위한 DC-DC 컨버터가 존재한다. 저전압 배터리 충전에 있어 고전압 배터리 외에 태양광 모듈 컨버터를 사용하여 고전압 배터리 사용량을 낮출 수 있다. 이 논문에서는 기존의 PSFB 컨버터의 2차측에 태양광 모듈과 스위치하나를 추가하여 태양광 Buck Converter를 구성하였고 PSFB컨버터의 출력 인덕터와 Synchronous switch를 사용하게 되어 소자 수를 절감하였다. 또한 PSFB 동작 시 1차측 전류가 Free wheeling하는 구간에서 태양광 Buck converter를 동작함으로써 고전압 배터리와 태양광 모듈에서 동시에 저전압 배터리로 전력공급이 가능하게 하였다.

  • PDF

Stacked Interleaved Buck DC-DC Converter With 50MHz Switching Frequency (Stacked Interleaved 방식의 50MHz 스위칭 주파수의 벅 변환기)

  • Kim, Young-Jae;Nam, Hyun-Seok;Ahn, Young-Kook;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.16-24
    • /
    • 2009
  • In this paper, DC-DC buck converter with on-chip filter inductor and capacitor is presented. By operating at high switching frequency of 50MHz with stacked interleaved topology, we reduced inductor and capacitor sizes compared to previously published DC-DC buck converters. The proposed circuit is designed in a standard $0.5{\mu}m$ CMOS process, and chip area is $9mm^2$. This circuit operated at the input voltage of $3{\sim}5V$ range, the maximum load current of 250mA, and the maximum efficiency of 71%.

A Modeling and Analysis of Poly-phase dc/dc Converter (다상화 dc/dc converter의 모델링 및 해석)

  • Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.512-515
    • /
    • 1991
  • The advantages of poly-phase converter are to be able to reduce the ripple current and to lessen the weight of power inductors. This paper is derived the equivalent circuit, dc of and ac modeling circuit of a 3-phase multiple buck converter by using state space representation and averaging techniche. Futhermore, it is represented the equivalent circuits according to the duty cycle.

  • PDF

A New Transformer Isolated Buck-Boost DC-DC Converter (새로운 절연형 Buck-Boost DC-DC 컨버터)

  • Cha, Hon-Nyong;Lee, Jong-Pil;Lee, Kyung-Jun;Kim, Tae-Jin;Yoo, Dong-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.154-155
    • /
    • 2010
  • 본 논문은 최소의 스위칭 소자를 이용한 절연형 Full-Bridge (FB) buck-boost DC-DC 컨버터를 제안한다. 기존의 dual-bridge 방식을 이용한 buck-boost 컨버터와는 달리 본 논문에서 제안한 방식은 변압기 1차측에만 스위칭 소자를 사용하고 2차측에는 다이오드 정류기를 사용한다. 필요한 buck-boost 기능을 구현하기 위하여 입력단에 2개의 인덕터를 추가하여 2 phase interleaved 방식으로 동작을 한다. 500 W 의 prototype을 제작하여 본 논문에서 제안한 방식의 타당성을 실험적으로 검증 한다.

  • PDF

Slope Compensation Design of Buck AC/DC LED Driver Based on Discrete-Time Domain Analysis (이산 시간 영역 해석에 기반한 벅 AC/DC LED 구동기의 슬로프 보상 설계)

  • Kim, Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.207-214
    • /
    • 2019
  • In this study, discrete-time domain analysis is proposed to investigate the input current of a buck AC/DC light-emitting diode (LED) driver. The buck power factor correction converter can operate in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). Two discontinuous and two continuous conduction operating modes are possible depending on which event terminates the conduction of the main switch in a switching cycle. All four operating modes are considered in the discrete-time domain analysis. The peak current-mode control with slope compensation is used to design a low-cost AC/DC LED driver. A slope compensation design of the buck AC/DC LED driver is described on the basis of a discrete-time domain analysis. Experimental results are presented to confirm the usefulness of the proposed analysis.

The Design of Controller and Modeling for Bi-directional DC-DC Converter including an Energy Storage System (에너지 저장장치를 포함하는 양방향 DC-DC 컨버터 모델링 및 제어기 설계)

  • Kim, Seung-Min;Yang, Seung-Dae;Choi, Ju-Yeop;Choy, Ick;An, Jin-Woong;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.235-244
    • /
    • 2012
  • This paper presents a design and simulation of bi-directional DC/DC boost converter for a fuel cell system. In this paper, we analyze the equivalent model of both a boost converter and a buck converter. Also we propose the controller of bi-directional DC-DC converter, which has buck mode of charging a capacitor and boost mode of discharging a capacitor. In order to design a controller, we draw bode plots of the control-to-output transfer function using specific parameters and incorporate proper compensator in a closed loop. As a result, it has increased PM(Phase Margin) for better dynamic performance. The proposed bi-directional DC-DC converter's 3pole-2zero compensation method has been verified with computer simulation and simulation results obtained demonstrates the validity of the proposed control scheme.