• 제목/요약/키워드: DC-DC

검색결과 13,295건 처리시간 0.043초

넓은 입력 전압 범위와 감소된 스트레스 전압 기능성을 갖는 새로운 승압형 멀티레벨 DC-DC 컨버터 (A New Multi Level High Gain Boost DC-DC Converter with Wide Input Voltage Range and Reduced Stress Voltage Capability)

  • 이바둘라예브 안바르;박성준
    • 전력전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.133-141
    • /
    • 2020
  • The use of high-gain-voltage step-up converters for distributed power generation systems is being popularized because of the need for new energy generation and power conversion technologies. In this study, a new constructed high-gain-boost DC-DC converter was proposed to coordinate low voltage output DC sources, such as PV or fuel cell systems, with high DC bus (380 V) lines. Compared with traditional boost DC-DC converters, the proposed converter can create higher gain and has wider input voltage range and lower voltage stress for power semiconductors and passive elements. Moreover, the proposed topology produces multilevel DC voltage output, which is the main advantage of the proposed topology. Steady-state analysis in continuous conduction mode of the proposed converter is discussed in detail. The practicability of the proposed DC-DC converter is presented by experimental results with a 300 W prototype converter.

마이크로프로세서 제어를 이용한 DC-DC Buck Converter 설계 (Design of DC-DC Buck Converter Using Micro-processor Control)

  • 장인혁;한지훈;임홍우
    • 공학기술논문지
    • /
    • 제5권4호
    • /
    • pp.349-353
    • /
    • 2012
  • Recently, Mobile multimedia equipments as smart phone and tablet pc requirement is increasing and this market is also being expanded. These mobile equipments require large multi-media function, so more power consumption is required. For these reasons, the needs of power management IC as switching type dc-dc converter and linear regulator have increased. DC-DC buck converter become more important in power management IC because the operating voltage of VLSI system is very low comparing to lithium-ion battery voltage. There are many people to be concerned about digital DC-DC converter without using external passive device recently. Digital controlled DC-DC converter is essential in mobile application to various external circumstance. This paper proposes the DC-DC Buck Converter using the AVR RISC 8-bit micro-processor control. The designed converter receives the input DC 18-30 [V] and the output voltage of DC-DC Converter changes by the feedback circuit using the A/D conversion function. Duty ratio is adjusted to maintain a constant output voltage 12 [V]. Proposed converter using the micro-processor control was compared to a typical boost converter. As a result, the current loss in the proposed converter was reduced about 10.7%. Input voltage and output voltage can be displayed on the LCD display to see the status of the operation.

DC-DC 컨버터의 효율 분석을 위한 PC용 가상 계측 시스템 (PC-based virtual measuring system for efficiency analysis of DC-DC converter)

  • 강원석;안태영
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.40-44
    • /
    • 2003
  • In this paper, a PC-based virtual measuring program for efficiency analysis of DC-DC converter is developed. Furthermore, a newly developed, highly accurate and reliable data acquisition system for DC-DC converter is presented. The virtual measuring system consists of two different types of monitoring and measuring system. Also, this paper give a full explanation for a LabVIEW realization of the measuring system for DC-DC converter.

  • PDF

전원 및 부하모델링 기반의 양방향 DC-DC 컨버터 최적 알고리즘 (Optimal Bidirectional DC-DC Converter Algorithm Based on Source and Load Modeling)

  • 문희성;최규영;이병국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1043_1044
    • /
    • 2009
  • 본 논문에서는 하루 24시간동안의 전원의 특성과 사용시간, 사용량을 고려한 부하를 전기적으로 모델링 하고 그를 통해 양방향 DC-DC 컨버터가 최적으로 동작할 수 있는 알고리즘을 제안하였다. 양방향 DC-DC 컨버터의 최적 알고리즘 제안을 위해 전체 시스템의 에너지 밸런싱에 초점을 맞춰 분석하였으며 하루 중 잉여 및 부족 전력에 따라 양방향 DC-DC 컨버터를 제어하도록 시뮬레이션을 구성하였고 그 결과를 통해 타당성을 검증하였다.

  • PDF

PCB변압기를 이용한 초박형 DC/DC컨버터 개발 (Development of Low-profile DC/DC Converter Using PCB Transformer)

  • 김동형;최병조;이기조
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.476-479
    • /
    • 2002
  • The proposed DC/DC converter employs a pair of neighboring printed-circuit-board windings as a coreless transformer Thus, the proposed DC/DC converter can be fabricated In an ultra low-profile fashion. The performance of the proposed low-profile DC/DC converter is confirmed with experiments on a prototype converter that delivers 58W of power at the maximum efficiency of $84\%$.

  • PDF

A Novel type of High-Frequency Transformer Linked Soft-Switching PWM DC-DC Power Converter for Large Current Applications

  • Morimoto Keiki;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.216-225
    • /
    • 2006
  • This paper presents a new circuit topology of DC busline switch and snubbing capacitor-assisted full-bridge soft-switching PWM inverter type DC-DC power converter with a high frequency link for low voltage large current applications as DC feeding systems, telecommunication power plants, automotive DC bus converters, plasma generator, electro plating plants, fuel cell interfaced power conditioner and arc welding power supplies. The proposed power converter circuit is based upon a voltage source-fed H type full-bridge high frequency PWM inverter with a high frequency transformer link. The conventional type high frequency inverter circuit is modified by adding a single power semiconductor switching device in series with DC rail and snubbing lossless capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge inverter arms and DC busline can achieve ZVS/ZVT turn-off and ZCS turn-on commutation operation. Therefore, the total switching losses at turn-off and turn-on switching transitions of these power semiconductor devices can be reduced even in the high switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules is selected to be 60 kHz. It is proved experimentally by the power loss analysis that the more the switching frequency increases, the more the proposed DC-DC converter can achieve high performance, lighter in weight, lower power losses and miniaturization in size as compared to the conventional hard switching one. The principle of operation, operation modes, practical and inherent effectiveness of this novel DC-DC power converter topology is proved for a low voltage and large current DC-DC power supplies of arc welder applications in industry.

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

Clinical Significance of Decompressive Craniectomy Surface Area and Side

  • Jo, KwangWook;Joo, Won Il;Yoo, Do Sung;Park, Hae-Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권2호
    • /
    • pp.261-270
    • /
    • 2021
  • Objective : Decompressive craniectomy (DC) can partially remove the unyielding skull vault and make affordable space for the expansion of swelling brain contents. The objective of this study was to compare clinical outcome according to DC surface area (DC area) and side. Methods : A total of 324 patients underwent different surgical methods (unilateral DC, 212 cases and bilateral DC, 112 cases) were included in this retrospective analysis. Their mean age was 53.4±16.6 years (median, 54 years). Neurological outcome (Glasgow outcome scale), ventricular intracranial pressure (ICP), and midline shift change (preoperative minus postoperative) were compared according to surgical methods and total DC area, DC surface removal rate (DC%) and side. Results : DC surgery was effective for ICP decrease (32.3±16.7 mmHg vs. 19.2±13.4 mmHg, p<0.001) and midline shift change (12.5±7.6 mm vs. 7.8±6.9 mm, p<0.001). The bilateral DC group showed larger total DC area (125.1±27.8 ㎠ for unilateral vs. 198.2±43.0 ㎠ for bilateral, p<0.001). Clinical outcomes were nonsignificant according to surgical side (favorable outcome, p=0.173 and mortality, p=0.470), significantly better when total DC area was over 160 ㎠ and DC% was 46% (p=0.020 and p=0.037, respectively). Conclusion : DC surgery is effective in decrease the elevated ICP, decrease the midline shift and improve the clinical outcome in massive brain swelling patient. Total DC area and removal rate was larger in bilateral DC than unilateral DC but clinical outcome was not influenced by DC side. DC area more than 160 ㎠ and DC surface removal rate more than 46% were more important than DC side.

Parameter Estimation by OE model of DC-DC Converter System for Operating Status Diagnosis

  • Jeon, Jin-Hong;Kim, Tae-Jin;Kim, Kwang-Su;Kim, Kwang-Hwa
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권4호
    • /
    • pp.206-210
    • /
    • 2004
  • This paper deals with a parameter estimation of the DC-DC converter system for its diagnosis. Especially, we present the results of parameter estimation for the DC-DC converter model by the system identification method. The parameter estimation for the DC-DC converter system aims at the diagnosis of its operating status. For the operating status diagnosis of the DC-DC converter system, we assume that the DC-DC converter system is an equivalent model of the Buck converter and estimate the main parameter for on-line diagnosis. In addition, for verification of an estimated parameter, we compare a bode plot of the estimated system transfer function and measurement results of the HP4194 instrument. It is a control system analyzer for system transfer function measurement. Our results confirm that the main parameter for diagnosis of the DC-DC converter system can be estimated by the system identification method and that the aging status of the system can be predicted by these results on operating status.

입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법 (Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation)

  • 선다운;정재헌;노의철;정규범
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.