• Title/Summary/Keyword: DC voltage

Search Result 4,532, Processing Time 0.033 seconds

Image Sticking Property in the In-Plane Switching Liquid Crystal Display by Residual DC Voltage Measurements

  • Jeon, Yong-Je;Seo, Dae-Shik;Kim, Jae-Hyung;Kim, Hyang-Yul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.142-145
    • /
    • 2001
  • The residual DC phenomena in the in-plane switching(IPS)-liquid crystal display(LCD) by the voltage-transmittance (V-T) and capacitance-voltage (C-V) hysteresis method on rubbed polyimide (PI) surfaces were studied. We found that the residual DC voltage in the IPS-LCD was decreasing with the increasing concentration of cyano LCs. The residual DC voltage of the IPS-LCD can be improved by the high polarity of cyano LCs.

  • PDF

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

Dynamic Voltage Compensation System Using Bi-directional DC/DC Converter of Electric Double-Layer Capacitor (EDLC의 양방향 DC/DC Converter를 이용한 동적 전압보상시스템)

  • Shon, Jin-Geun;Lee, Sang-Cheol;Lee, Gong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.108-111
    • /
    • 2007
  • A novel voltage sag compensator with hi-directional DC/DC converter of Electric double layer capacitor is proposed. Recently, the double-layer capacitor which is drawn attention as a new energy storage element has a lot of advantage such as no maintenance, long lifetime and quick charge/discharge characteristics with large current. This DC/DC converter is used to control the charging current to the double-layer capacitor and also used to keep the DC link voltage constant for discharge of the double-layer capacitor. Therefore, the proposed DC/DC converter has the high-efficiency controller, dynamic compensator of voltage sag is driven by this converter. Finally, experimental results show the validity of the control scheme and the ability of the dynamic voltage compensator.

  • PDF

Design of DC Battery Size & Controller for Household Single-Phase ESS-PCS Considering Voltage Drop and DC Link Voltage Ripple (주택용 단상 ESS-PCS의 전압손실과 직류링크 맥동을 고려한 직류측 배터리 사이즈 및 제어기 설계)

  • Kim, Yong-Jung;Lee, Jinsung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.94-100
    • /
    • 2018
  • Generally, in a single-phase energy storage system (ESS) for households, AC ripple component with twice the fundamental frequency exists inevitably in the DC link voltage of single-phase PCS. In the grid-connected mode of a single-phase inverter, the AC ripple component in the DC link voltage causes low-order harmonics on grid-side current that deteriorates power quality on an AC grid. In this work, a control system adopting a feedforward controller is established to eliminate the AC ripple interference on the DC link side. Optimal battery nominal voltage design method is also proposed by considering the voltage loss and AC ripple voltage on DC link side in a single-phase ESS. Finally, the control system and battery nominal voltage design method are verified through simulations and experiments.

Operation Analysis of Resonant DC/DC Converter able to Harvest Thermoelectric Energy (열전에너지 수확이 가능한 공진형 DC/DC 컨버터의 동작 해석)

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Kwan-Youl;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.150-158
    • /
    • 2010
  • The operational characteristics of a resonant DC/DC converter, which can harvest thermoelectric energy, is analyzed, depending on the relative magnitudes of the input voltage and the load voltage. The resonant converter consists of LC resonant circuit connected to DC input source and a resonant pulse converter in which the input energy is transferred to the load as the resonant capacitor voltage is peak. The resonant capacitor doubles the input voltage by the resonance phenomenon. By the relative magnitude between the input voltage and the output voltage, the resonant DC/DC converter operates in three different modes. For boost mode, the peak voltage of the resonant capacitor is smaller than the load voltage. For hybrid mode, the peak voltage of the resonant capacitor is bigger than the load voltage and every switching period has both the boost mode and the direct mode. For the direct mode, the input voltage is bigger than the load voltage and the converter transfers directly the input energy to the load without the switching operation. Operation principles and the feasibility of the converter for the thermoelectric energy harvesting are verified with PSPICE simulation and experiment.

A New Approach for Constant DC Link Voltage in a Direct Drive Variable Speed Wind Energy Conversion System

  • Jeevajothi, R.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.529-538
    • /
    • 2015
  • Due to the high efficiency and compact mechanical structure, direct drive variable speed generators are used for power conversion in wind turbines. The wind energy conversion system (WECS) considered in this paper consists of a permanent magnet synchronous generator (PMSG), uncontrolled rectifier, dc-dc boost converter controlled with maximum power point tracking (MPPT) and adaptive hysteresis controlled voltage source inverter (VSI). For high utilization of the converter's power capability and stabilizing voltage and power flow, constant DC-link voltage is essential. Step and search MPPT algorithm which senses the rectified voltage ($V_{DC}$) alone and controls the same is used to effectively maximize the output power. The adaptive hysteresis band current control is characterized by fast dynamic response and constant switching frequency. With MPPT and adaptive hysteresis band current control in VSI, the DC link voltage is maintained constant under variable wind speeds and transient grid currents respectively.

DC Voltage Build-Up Suppression Scheme of HVDC System for Offshore Wind Farm Connection using Chopper Resistor and de-loading (초퍼저항 및 de-loading 협조제어를 통한 해상풍력 연계용 HVDC시스템 DC전압 상승 억제 방안)

  • Lee, Hyeong-Jin;Kang, Byoung-Wook;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.750-756
    • /
    • 2017
  • This paper presents a method for DC voltage control of HVDC system connection of offshore wind farms. In the event of fault in AC grid, HVDC system need to meet LVRT regulations. When HVDC system meet LVRT regulation, unbalance is caused between power input and power output for DC link. Therefore, LVRT regulation lead to DC voltage increase of HVDC system. To control the DC voltage increase, the chopper resistor can be suggested. In this paper, DC voltage suppression is proposed using chopper resistor and de-loading. The effectiveness of the chopper resistor was verified using PSCAD/EMTDC.

VLSI Design of Low Voltage DC/DC Converter using Zero Voltage Switching Technique (Zero Voltage Switching을 이용한 저전압 DC/DC 컨버터의 고집적회로 설계)

  • 전재훈;김종태;홍병유
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.564-571
    • /
    • 2001
  • This paper presents the VLSI design of highly efficient low voltage DC/DC converter for portable devices. All active devices are integrated on a single chip using a standard 0.65$\mu\textrm{m}$ CMOS process. The converter operates at the switching frequency of 1MHz for reducing the size of passive elements and uses a ZVS for minimizing the switching loss at high frequency. Simulation results show that the circuit can achieve a 95% efficiency when the output voltage is controlled to be 2V with the load of lW.

  • PDF

A Novel Three Level DC/DC Converter for High power applications operating from High Input Voltage (대용량 및 높은 입력전압에 적합한 새로운 Three Level DC/DC 컨버터)

  • Han S.K.;Oh W.S.;Moon G.W.;Youn M.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.317-322
    • /
    • 2003
  • A novel three-level DC/DC converter (TLC)for high power applications operating from high input voltage Is proposed. Its switch voltage stress can be ensured to be only one-half of the Input voltage. Nevertheless, since all input voltage is applied to the transformer primary side, it has good turns ratio. The driving method of each module is same as those of the conventional phase-shifted ZVS full bridge PWM converter (PSFB) and the zero-voltage-switching (ZVS) of the leading leg are achieved exactly in the same manner as that of the PSFB. Moreover, its three-level operation can considerably reduce the current ripple through the output inductor and it has no problems of the DC-link voltage unbalance. Therefore, it features a low voltage stress, high efficiency, low EMI, high power density, and small sized filter. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 200W, 600V/DC-48V/DC prototype are presented.

  • PDF

DC-Voltage Regulation for Solar-Variable Speed Hybrid System (태양광 기반의 가변속 하이브리드 시스템을 위한 직류 전압 제어)

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho;Song, Yujin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • Recently, the interest in DC systems to achieve more efficient connection with renewable energy sources, energy storage systems, and DC loads has been growing extensively. DC systems are more advantageous than AC systems because of their low conversion losses. However, the DC-link voltage is variable during operation because of different random effects. This study focuses on DC voltage stabilization applied in stand-alone DC microgrids by means of voltage ranges, power management, and coordination scheme. The quality and stability of the entire system are improved by keeping the voltage within acceptable limits. In terms of optimized control, the maximum power should be tracked from renewable resources during different operating modes of the system. The ESS and VSDG cover the power shortage after all available renewable energy is consumed. Keeping the state of charge of the ESS within the allowed bands is the key role of the control system. Load shedding or power generation curtailment should automatically occur if the maximum tolerable voltage variation is exceeded. PSIM-based simulation results are presented to evaluate the performance of the proposed control measures.