• Title/Summary/Keyword: DC railway

Search Result 243, Processing Time 0.026 seconds

A study on Rail Potential Test adaptation for Performance test of DC Railway system (직류 전기철도 성능시험을 위한 레일전위시험 적용연구)

  • Jung, Ho-Sung;Jang, Dong-Uk;Han, Moon-Seob;Park, Hyun-June
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.238-240
    • /
    • 2007
  • This paper present adaptation method of rail potential test to verify DC railway system's performance and safety. For protection of person and utility caused by rail potential rise, international standard to limit rail potential rise is made and rail potential is tested at the time of plan and construction of DC railway system in foreign country. So, we need rail potential test at the opening time and prepare a continuous monitoring technique of rail potential and a limitation method of rail potential rise. For these, we describe cause of rail potential rise, international standard about rail potential, protection principle, an example of calculation and measurement, and adaptation method for performance test.

  • PDF

A Control Method of Electric Railway Vehicle Recycle Energy Storage System Using Supercapacitor (슈퍼커패시터를 이용한 전동차량 화생 에너지 저장 시스템의 제어기법)

  • Noh, Se-Jin;Lee, Jin-Mok;Son, Kyoung-Min;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.97-99
    • /
    • 2008
  • It is possible to suppress voltage drops, power loading fluctuations and regeneration power lapses for DC railway systems by applying an energy storage system. Recently the electric double layer capacitor (EDLC) of the rapid charge/discharge type has been developed and used in wide ranges. The on board energy storage system with supercapacitor for railway vehicles presented in this paper seems to be a reliable technical solution with an enormous energy saving potential. In this paper, an efficient charge and discharge control method of a bidirectional DC-DC converter using the supercapacitor is proposed.

  • PDF

The Parallel Operation of AC to DC PWM Converters for a High Speed Railway Train (고속전철용 입력 AC/DC PWM 컨버터의 병령운전)

  • Ryu, Hong-Je;U, Myeong-Ho;Kim, Jong-Su;Im, Geun-Hui;Won, Chung-Yeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.272-281
    • /
    • 2000
  • This paper deals with the parallel operation of several numbers of PWM converters for a high speed railway train application. Several considerations are made to reduce the transformer interaction which can cause a current control problem in severe case. Also, in this paper, novel control strategy is proposed to achieve a harmonic free primary-side current control under a light load condition using one current sensor independent of the number of converters. In addition, the modified predictive current controller, which is suitable to a digital current controller with a relatively large sampling period, is used. Finally, to verify the system validity, digital control system with TMS320C44 micro-processor and small scale simulator are made and tested.

  • PDF

Investigation of the real time stray current monitoring techniques on the DC railway system (직류전기철도에서의 실시간 누설전류 계측기법에 관한 조사분석)

  • Jung, Ho-Sung;Han, Moon-Seob;Park, Young;Kim, Hyeng-Chul;Kim, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.201-203
    • /
    • 2009
  • This paper presents the real time stray current monitoring techniques on the DC railway system. These techniques are two types. The first one is the rail potential measurement technique between running rail and earthing mats on the important locations such as substation, station, and so on. And the second one is measurement technique of stray current through substation earthing mats and from collection mats, and continuous monitoring of return currents through the running rails. We need to apply these techniques on DC railway system to monitor stray current periodically and maintain the system properly.

  • PDF

A Study on the Real Time Measuring Technique of Stray Current by Using Return Current Ratio in the DC Railway System (직류급전시스템에서의 귀환전류 변화비를 이용한 표유전류 실시간 감시기법에 관한 연구)

  • Jung, Ho-Sung;Park, Young;Kim, Hyeng-Chul;Min, Myung-Hwan;Shin, Myong-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.892-898
    • /
    • 2011
  • In DC electric railways, while an electric rail car is driving, a part of the working current returned to the substation through rails leaks into the ground. Such a stray current causes railway facilities and metal objects to corrode electrolytically. Therefore, change of stray current needs to be monitored constantly. But so far in domestic, the research on stray current measuring techniques and system adaption are insufficient. To estimate stray current, this paper addresses a method of monitoring the return current that is returned into the negative pole of the substation in real time.

A Protection Algorithm for DC Railway Systems Considering Train Starting (기동방식을 고려한 DC급전계통 보호알고리즘)

  • Kwon Y. J.;Choi D. M.;Kang S. H.;Han M. S.;Lee J. K.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.307-309
    • /
    • 2004
  • A DC railway system has low feeder voltage, The remote fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the train starting current. The train starting current increases step by step but the fault current increases all at once. So the type of $\bigtriangleup I\;relay(50F)$ was developed using the different characteristics between the load starting current and the fault current. As for the train starting current, the time constant of train current at each step is much smaller than that of the fault current. To detect faults in U railway systems, an algorithm that is independent of train starting current. This algorithm use the time constant calculated by the method of least squares is presented in this paper.

  • PDF

The Development of APU(Auxiliary Power Supply Unit) for DC 3000V (DC 3000V용 보조전원장치 개발)

  • Kim, Jin-Yong;Kimg, Youn-Chung;Han, Jung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1654-1660
    • /
    • 2011
  • The korea Electric Railway feeder voltage is DC 1500V and AC 250000V. The auxiliary power supply of the vehicle auxiliary power units for domestic electrical feed has been developed with domestic technology hyeonchae mounted station, and domestic uses, such as voltage, have been exported to other countries. However, do not use at domestic that can be used for DC 3000V voltage auxiliary power unit does not develop, vehicle exports global. This has already been replaced by imported products from other nations is a real situation. Thus, our auxiliary power unit for the DC 3000V was developed, it will be exported to Ukraine. In this paper, We introduced circuit and structure of developed auxiliary power supply unit, and verified the performance with output characteristic of the auxiliary power unit.

  • PDF

RC Circuit Parameter Estimation for DC Electric Traction Substation Using Linear Artificial Neural Network Scheme (선형인공신경망을 이용한 직류 전철변전소의 RC 회로정수 추정)

  • Bae, Chang Han;Kim, Young Guk;Park, Chan Kyoung;Kim, Yong Ki;Han, Moon Seob
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.314-323
    • /
    • 2016
  • Overhead line voltage of DC railway traction substations has rising or falling characteristics depending on the acceleration and regenerative braking of the subway train loads. The suppression of this irregular fluctuation of the line voltage gives rise to improved energy efficiency of both the railway substation and the trains. This paper presents parameter estimation schemes using the RC circuit model for an overhead line voltage at a 1500V DC electric railway traction substation. A linear artificial neural network with a back-propagation learning algorithm was trained using the measurement data for an overhead line voltage and four feeder currents. The least square estimation method was configured to implement batch processing of these measurement data. These estimation results have been presented and performance analysis has been achieved through raw data simulation.

Measurement and Analysis of Regenerative Energy in DC 1500V Electric Traction Substation (직류 1500V 전철변전소의 회생전력량 측정 및 분석)

  • Bae, Chang-Han;Jang, Dong-Uk;Kim, Ju-Rak;Han, Moon-Seub;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.717-722
    • /
    • 2007
  • Most of DC 1500V electric railway substations have adopted diode rectifiers to supply stable DC power. However, the diode rectifiers operate in the first quadrant of the voltage-current plane and thus need regenerative inverters which transfer the surplus regenerative power caused by regenerative braking of electric train sets into the grid. In order to select the proper capacity and installation position of regenerative inverter, it needs to investigate the consumed and regenerative energy of the electric traction substations in advance. This paper presents an analysis of regenerative energy in two substations operating in Seoul Seolleung and Kwangju Yangdong substations. DC line voltage and feeder currents are measured for a day to calculate consumed and regenerative power far four feeders. We calculated an amount of regenerative energy consumed in other feeders and estimated the cost reduction in energy consumption due to the reuse of regenerative energy

Research on improvement performance of air-cooled rectifier for Electric railway (전철용 공랭식 정류기 성능 향상방안에 관한 연구)

  • Han, Hag-Su;Choi, Byoung-Un;Bae, Sang-Man;Kim, Chan-Sik;Kim, Young-Eun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1489-1497
    • /
    • 2009
  • The rectifier for Electric railway is one of the most important facilities in DC urban railway which converts power from KEPCO(AC 22.9kV) to the electric mil car(DC 1.5kV), therefore it should be managed as the best condition for the drive. There are several things to cause performance degradation and deterioration of parts such as pollutants occurred by it established under the ground such as dust or foreign substances, rapid changes of driving current, and pyrogen which put the rectifier for Electric railway in malfunction. On the flow of time, the rectifier for Electric railway is causing a malfunction or failure which drive electric rail car in operations as well as loss of life. In this research we try to find the way of removing the various components of mal-functions in the performance of the rectifier for Electric railway by Over-Haul and reform itself, which gives us to get the chance investment of the reduction, the reliability of power supply to the electric rail car.

  • PDF