• Title/Summary/Keyword: DC power substation

Search Result 65, Processing Time 0.023 seconds

Performance Evaluation of SHF Sensor for Partial Discharge Signal Detection on DC Rectifier (DC 정류기 부분방전 신호검출을 위한 SHF 센서의 성능평가)

  • Jung, Ho-Sung;Park, Young;Na, Hee-Seung;Jang, Soon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1056-1060
    • /
    • 2012
  • Online monitoring system is becoming an essential element of railway traction system for utilized to condition based malignance management and various techniques currently employed in railway traction system. Among the various techniques, it is efficient to detect partial discharge signals by electromagnetic wave detection in order to detect insulation fault of rectifier. Although VHF (Very High Frequency), UHF (Ultra High Frequency) sensors were adopted to detect partial discharge of power facilities, due to characteristics of urban railway, excessive noise occurs from 500 MHz to 1.5 GHz on UHF bandwidth. In this paper a new measurement system able to monitoring the conditions of power facilities on DC substation in metro was studied and set up. The system uses UHF sensors to measure the partial discharge of the rectifier due to electric faulting and dielectric breakdown. Comparison and estimation for performance of SHF sensor which had devised to detect partial discharge signal of urban railway rectifier has conducted. In order to estimate performance of SHF sensor, we have compared the sensor with existing UHF sensor on sensitivity upon frequency bandwidth generated by pulse generator, and also we have verified performance of the SHF sensor by detection results of partial discharge signal from urban railway rectifier.

Design and Assessment of DC Traction Power Supply System for Light Rail Transit (직류 전기철도 시스템의 변전소 설계 및 평가)

  • Baek, Byung-San;Moon, Jong-Fil;Choi, Joon-Ho;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.86-97
    • /
    • 2006
  • For the design of DC traction power supply system at new Light Rail Transit(LRT) construction, it is very important to determine system configuration, location and power capacity of substation. However, a LRT system consists of a number of subsystems such as train movement, power supply and traction drives, which inevitably contains many complexities and diversities. The objective of this paper is to clarify and systematize the design procedure and its assessment for the electrification system of a LRT line. This paper discusses in detail our approach to system design and its assessment. The whole DC-feeding network configuration, characteristics of a train, and design method of substation arrangements is thoroughly investigated for the design. As a result of the investigations, the design procedure is clarified and systematized and a computer program for the design and evaluation of the system is developed using the most suitable iterative method with nodal equation. To verify the proposed design and its assessment procedure, case studies for the DC traction power supply system of a planed Korean LRT line are performed.

RC Circuit Parameter Estimation for DC Electric Traction Substation Using Linear Artificial Neural Network Scheme (선형인공신경망을 이용한 직류 전철변전소의 RC 회로정수 추정)

  • Bae, Chang Han;Kim, Young Guk;Park, Chan Kyoung;Kim, Yong Ki;Han, Moon Seob
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.314-323
    • /
    • 2016
  • Overhead line voltage of DC railway traction substations has rising or falling characteristics depending on the acceleration and regenerative braking of the subway train loads. The suppression of this irregular fluctuation of the line voltage gives rise to improved energy efficiency of both the railway substation and the trains. This paper presents parameter estimation schemes using the RC circuit model for an overhead line voltage at a 1500V DC electric railway traction substation. A linear artificial neural network with a back-propagation learning algorithm was trained using the measurement data for an overhead line voltage and four feeder currents. The least square estimation method was configured to implement batch processing of these measurement data. These estimation results have been presented and performance analysis has been achieved through raw data simulation.

Improving the capability of energy regeneration inverter for dc electric traction system (직류전철용 에너지 회생장치 성능개선)

  • Bang, Hyo-Jin;Kim, Yong-Ki;Jang, Su-Jin;Song, Sang-Hun;Ahn, Kyu-Bok;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.104-109
    • /
    • 2004
  • Recently, when electric traction system used DC 1500[Vdc] runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. Therefore this paper proposes that the extra power is regenerated through regeneration inverter to AC utility in result this system obstruct to go beyond regular voltage and improve the efficiency. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality.

  • PDF

Peak Power Optimization for Metro Railway using by Source Impedance Control (전원 임피던스 제어를 통한 도시철도 최대전력 최적화)

  • Kim, Han-Su;Kwon, Oh-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.841-849
    • /
    • 2014
  • Urban railway with rectifiers is connected by parallel circuits because substations are joined by the power rail. Thus, if an input voltage of a substation is increased, then the voltage of rectifiers is also increased, and which leads to an increase in the peak power of the substation. To solve this problem, this paper proposes a new method reducing the peak power of substations by adjusting the operation number of rectifiers. Its feasibility is exemplified by some simulations performed for Incheon subway Line 1 and GA(Genetic Algorithm) method has been applied to obtain the optimal input. Simulation results show that peak power can significantly be reduced using the method proposed in this paper.

The safety Properties of Rectifier Mold Transformer for DC Railway System (직류 전철 계통의 정류기용 몰드변압기 안전성에 관한 연구)

  • Joo Hyun-Jung;Park Hyun-June;Kim Kyeong-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.742-747
    • /
    • 2005
  • Electric railroad transformer of a supply of Operation power of DC electric cars is intense fluctuation of load and flows the only big short-circuit current as a accident of the power system. it is a peculiarity more severe than general power transformer. Consequently, researches the properties about the rectifier mold transformer of DC substation and applies with data of safety of the electric railroad transformer. This paper analyzed a failure mode, the accident occurrence scenario and the be latent dangerous unit against the rectifier mold transformer of DC railway system.

  • PDF

Measurement and Analysis of Regenerative Energy in DC 1500V Electric Traction Substation (직류 1500V 전철변전소의 회생전력량 측정 및 분석)

  • Bae, Chang-Han;Jang, Dong-Uk;Kim, Ju-Rak;Han, Moon-Seub;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.717-722
    • /
    • 2007
  • Most of DC 1500V electric railway substations have adopted diode rectifiers to supply stable DC power. However, the diode rectifiers operate in the first quadrant of the voltage-current plane and thus need regenerative inverters which transfer the surplus regenerative power caused by regenerative braking of electric train sets into the grid. In order to select the proper capacity and installation position of regenerative inverter, it needs to investigate the consumed and regenerative energy of the electric traction substations in advance. This paper presents an analysis of regenerative energy in two substations operating in Seoul Seolleung and Kwangju Yangdong substations. DC line voltage and feeder currents are measured for a day to calculate consumed and regenerative power far four feeders. We calculated an amount of regenerative energy consumed in other feeders and estimated the cost reduction in energy consumption due to the reuse of regenerative energy

Probabilistic Reliability Based HVDC Expansion Planning of Power System Including Wind Turbine Generators (풍력발전기를 포함하는 전력계통에서의 신뢰도 기반 HVDC 확충계획)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Yoon, Yongbeum;Kim, Chan-Ki;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • New methodology for probabilistic reliability based grid expansion planning of HVDC in power system including Wind Turbine Generators(WTG) is developed in this paper. This problem is focused on scenario based optimal selection technique to decide best connection bus of new transmission lines of HVDC in view point of adequacy reliability in power system including WTG. This requires two kinds of modeling and simulation for reliability evaluation. One is how is reliability evaluation model and simulation of WTG. Another is to develop a failure model of HVDC. First, reliability evaluation of power system including WTG needs multi-state simulation methodology because of intermittent characteristics of wind speed and nonlinear generation curve of WTG. Reliability methodology of power system including WTG has already been developed with considering multi-state simulation over the years in the world. The multi-state model already developed by authors is used for WTG reliability simulation in this study. Second, the power system including HVDC includes AC/DC converter and DC/AC inverter substation. The substation is composed of a lot of thyristor devices, in which devices have possibility of failure occurrence in potential. Failure model of AC/DC converter and DC/AC inverter substation in order to simulate HVDC reliability is newly proposed in this paper. Furthermore, this problem should be formulated in hierarchical level II(HLII) reliability evaluation because of best bus choice problem for connecting new HVDC and transmission lines consideration. HLII reliability simulation technique is not simple but difficult and complex. CmRel program, which is adequacy reliability evaluation program developed by authors, is extended and developed for this study. Using proposed method, new HVDC connected bus point is able to be decided at best reliability level successfully. Methodology proposed in this paper is applied to small sized model power system.

Analysis on Voltage and Cost of Substation with PWM Rectifier in DC Traction Power Supply System (PWM 정류기를 적용한 직류급전시스템의 전압강하 및 비용 평가)

  • Kim, Joorak;Park, Kijun;Park, Chang-Reung;Choo, Eun-Sang;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.640-645
    • /
    • 2015
  • Near surface transit system has should be constructed as installation cost of light rail transit with elevated track. So, distance between two substations is longer than conventional system. The long feeding distance results in severe voltage drop. This paper proposes a PWM rectifier instead of diode rectifier. The PWM rectifier has some advantages. This is able to control output voltage constantly to reduce voltage drop and to use regeneration power without additional inverter. This paper analyse on improved voltage profile and cost of substation with PWM rectifier. The analysis of voltage profile use PSIM, and the installation cost of substation with PWM rectifier is compared to substation with diode rectifier.

The study on Reduction of Demand Power in Urban Railway using OLTC (OLTC를 활용한 도시철도 최대전력 감축에 관한 연구)

  • Kim, Han-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.963-968
    • /
    • 2016
  • This paper proposes a new method reducing the maximum demand power of substations at urban railway by using transformer with OLTC(:On Load Tap Changer). Most of the domestic urban railway is rectified by a diode scheme, and supplies the electric vehicles in dc 1500[v]. Because the substations are connected in parallel, if an input voltage of a substation is increased, then the voltage of rectifiers is also increased, and which leads to an increase in the maximum demand of the substation. Simulation results show that increment of maximum demand power can significantly be limited using the method proposed in this paper.