• Title/Summary/Keyword: DC motor case

Search Result 87, Processing Time 0.025 seconds

The PLL Speed Control of DC Servo Motor for Mobile Robot Drives (자립형 이동로봇 구동을 위한 직류서보전동기 PLL속도제어 시스템에 관한 연구)

  • Eum, S.O.;Hong, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1020-1022
    • /
    • 1993
  • The speed control associated with do send motors for direct-drive applications of mobile robot is considered. In odor to the high-performance operation of dc servo motor, drive circuits is controlled Pulse Width Modulations. In this case, PWM driving circuit has nonliner charactristics. This circuit composed of H-type bridge with freewheeling diodes in odor to deal with storage energy of motor's inductance and also control method is developed. At resultes, speed charactristics of motor is shown lineristics. In oder to speed control of motor. The opertion of phase-locked servo system is described and a linear discrete model is developed to their behavior. Thise model discussed are the design problems, speed variation.

  • PDF

Improvement of the amplification gain for a propulsion drives of an electric vehicle with sensor voltage and mechanical speed control

  • Negadi, Karim;Boudiaf, Mohamed;Araria, Rabah;Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.661-675
    • /
    • 2022
  • In this paper, an electric vehicle drives with efficient control and low cost hardware using four quadrant DC converter with Permanent Magnet Direct Current (PMDC) motor fed by DC boost converter is presented. The main idea of this work is to improve the energy efficiency of the conversion chain of an electric vehicle by inserting a boost converter between the battery and the four quadrant-DC motor chopper assembly. Consequently, this method makes it possible to maintain the amplification gain of the 4 quadrant chopper constant regardless of the battery voltage drop and even in the presence of a fault in the battery. One of the most important control problems is control under heavy uncertainty conditions. The higher order sliding mode control technique is introduced for the adjustment of DC bus voltage and mechanical motor speed. To implement the proposed approach in the automotive field, experimental tests were carried out. The performances obtained show the usefulness of this system for a better energy management of an electric vehicle and an ideal control under different operating conditions and constraints, mostly at nominal operation, in the presence of a load torque, when reversing the direction of rotation of the motor speed and even in case of battery chamber failure. The whole system has been tested experimentally and its performance has been analyzed.

The Estimation Algorithm Design of Hall Sensor Signal Considering Safety of BLDC Motor (브러시리스 직류전동기의 안전성을 고려한 Hall Sensor 신호 추정 알고리즘 설계)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1894-1899
    • /
    • 2016
  • In this paper, because the position sensor represents the important factor in BLDC (Brushless DC) motor drives, BLDC motor is necessary that the three Hall-sensors evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-sensor is set up in this motor to detect the main flux from the rotor. So the output signal from Hall-sensor is used to drive IGBT to control the stator winding current. However, in case of breakdown Hall sensor, we research that the estimation algorithm of Hall sensor signal to detect rotor position and for the speed feedback signals with BLDC motor whose six stator and two rotor designed. In addition, this paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor.

Measurement and Analysis of Electromagnetic field for DC electric railway train (직류철도차량에 대한 자계측정 및 분석)

  • Jang, Dong-Uk;Kim, Min-Cheol;Lee, Chang-Mu;Han, Moon-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1637-1639
    • /
    • 2005
  • The measurement of magnetic field is performed about DC and AC magnetic field in test track of depot. The test point is cap, on the converter/inverter box, on the traction motor, on the APSE and on the line filter, the height of measurement is bottom and 50 cm height. In case of AC magnetic field, the selected specific frequency is measured on the converter/inverter box. The AC magnetic field is checked and analysis through RS-232C and notebook PC. The DC magnetic field is measured by using the Hall Probe, test result is saved and analysis by PXI system. On the line filter, the maximum value is 1.4 mT in case of DC magnetic field and 0.044 mT in case of AC magnetic field at 50 Hz.

  • PDF

The Attitude Control of The Double Inverted Pendulum with Periodic Upper Disturbance (주기적인 상부 외란이 인가되는 2축 도립 진자의 자세 제어)

  • Nam, Row-Hyun;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2309-2311
    • /
    • 1998
  • The attitude control of a double inverted pendulum with a periodical disturbance at link top is dealt in this paper. The proposed system is consisted of the double inverted pendulum and a disturbance link. The lower link is hinged on the plate to free for rotation in the vertical plane. The upper link is connected to the lower link through a DC motor. The DC motor is used to control the posture of the pendulum by adjusting the position of the upper link. The periodical disturbance can be generated by the additional link attached at the end of link 2 through another DC motor, which is the modeling of a posture for a biped supporting with one leg. The motor for the joint simulates the knee joint(or hip joint) and the disturbance for the legs moving in air. The algorithm for controlling a proposed inverted pendulum is consisted of a state feedback control and a fuzzy logic controller. The fuzzy controller keeps the center of gravity of the biped within the specified range through the nonlinear feedback compensator. The state feedback control takes over the role to maintain a desired posture regardless the disturbance at the link top. In these case, the change of the angle and COG of an upper link is compensated with on-line. Simulations with a mathematical model are conducted to show the validity of the proposed controller.

  • PDF

A Study on Efficiency Improvement of Power Conversion System for Escalator (에스컬레이터용 전력변환장치 효율 개선에 관한 연구)

  • Cho, Su-Eog
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.525-529
    • /
    • 2016
  • In the case of a motor system that converts electrical energy into mechanical energy, the region of the motor and that of the generator coexists. In the case of an escalator, the ascending escalator is operated by the motor, whereas the descending escalator is operated by the generator according to the load. To evaluate the proposed method, this study reduces the power of the ascending escalator up to approximately 35% by sharing the regeneration power of the descending escalator. The loss of transfer power nearly exists in the case of the proposed method. Furthermore, the lifetime of the DC link condenser can be extended because it is connected in parallel, thus leading to a twofold increase in capacity.

Design of a Fuzzy P+ID controller for brushless DC motor speed control

  • Kim, Young-Sik;Kim, Sung-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.627-630
    • /
    • 2004
  • The PID type controller has been widely used in industrial application due to its simply control structure, ease of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller (fuzzy P+ID). In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.

Design of Deadbeat Controller for DC Motor Driving a Rotational Mechanical System (회전기계 계통을 가동시키는 직류전동기를 위한 데드비트제어기 설계)

  • 이흥재;송자윤
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.31-36
    • /
    • 2000
  • This paper presents a design method of deadbeat controller for DC motor driving a rotational system with gear. The deadbeat-response design developed for control system of a sampled continuous-data process does not guarantee zero intersampling ripples, but the proposed deadbeat control system that consists of the integral controller and the full-order state observer, and zero-order hold using in continuous systems, has many advantages such as an output response without the ripples and reaching the steady state without error after a given sampling period and faster settling time than the optimal control system in the same sampling period. The results of a case study through matlab simulation are shown that the efficiency of the proposed controller for DC motor driving a rotational system with gear is verified by comparing with optimal controller etc.

  • PDF

Permanent Magnet Overhang Effect on the Characteristics in Brushless DC Motor (브러시리스 직류전동기 특성에 대한 영구자석 오버행 효과)

  • 전연도;약미진치;이주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.229-236
    • /
    • 2004
  • In this paper, the effect of permanent magnet overhang structure on the characteristics in Brushless DC motor has analyzed quantitatively. We classified the overhang structure as symmetric and asymmetric. 3D equivalent magnetic circuit network (EMCN) method which uses the permeance as the distributive variable is used for the efficient analysis of magnetic field. The overhang effect which increases the linkage flux at the stator is verified by comparison between overhang and no overhang structure. In addition, it is known that no load back electro motive force (EMF) is also increased due to the overhang effect. In case of asymmetric overhang structure, the ratio effect of the upper to lower overhang length on the magnetic forces is analyzed. Form the analysis results, the variation of the asymmetric overhang ratio has a significant effect on the axial magnetic force except the radial and tangential magnetic forces. The validity of the analysis results is also clarified by comparison between calculated results and measured ones such as back EMF and cogging torque.