• Title/Summary/Keyword: DC line fault

Search Result 73, Processing Time 0.027 seconds

Jeju 80kV HVDC Controller Modeling Using PSCAD/EMTDC Program (PSCAD/EMTDC 프로그램을 이용한 제주 80kV HVDC 제어기 모델링)

  • Choi, Soon-Ho;Lee, Seong-Doo;Kim, Chan-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.533-541
    • /
    • 2011
  • This paper studies modeling of Jeju 80kV HVDC system and its controller by using PSCAD/EMTDC program. Reduced ac network is applied to verify interaction between ac network and dc system. Design parameter is applied to the converter transformer, harmonic filter and dc transmisstion line to simulate dc system. HVDC controller is divided into a rectifier controller and a inverter controller according to the converter operating mode. The inverter controller is composed of current control, voltage control and extingtion angle control. The rectifier controller is composed of current control and voltage control. Both controller has VDCOL characteristics so that current order is dependant on voltage variation. Step response, ac network single phase fault, three phase fault is simulated to verify the dynamic performance of controller model in both transient state and steady state.

Simulation for characteristics of various type SFCLs (유형별 초전도 한류기의 특성에 대한 시뮬레이션)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Sang-Joon;Han, Byoung-Sung
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.338-342
    • /
    • 1999
  • We simulated the current limiting characteristics of resistive and inductive SFCLs with 100 ${\omega}$ of impedances for a single and double line-to-ground faults in the 154 kV grid between two substations nearby Seoul. The transient current at the faults includes not. only high AC current up to 44 kA but also significant DC component as high as 4 kA. The DC current is greater and lasts longer for the double line-to-ground fault than for the single line-to-ground fault. The inductive SFCL limited the fault current more effectively than the resistive one. The DC component, however, was greater and diminishes slower for the inductive SFCL than for the resistive one.

  • PDF

IGBT DC Circuit Breaker with Paralleled MOV for 1,800V DC Railway Applications (직류 철도용 MOV 병렬연결 1,800V급 IGBT 직류 고속차단기 연구)

  • Han, Moonseob;Lee, Chang-Mu;Kim, Ju-Rak;Chang, Sang-Hoon;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2109-2112
    • /
    • 2016
  • The rate of rise of the fault current in DC grids is very high compared to AC grids because of the low line impedance of DC lines. In AC grids the arc of the circuit breaker under current interruption is extinguished by the zero current crossing which is provided naturally by the system. In DC grids the zero current crossing must be provided by the circuit breaker itself. Unlike AC girds, the magnetic energy of DC grids is stored in the system inductance. The DC circuit breaker must dissipate the stored energy. In addition the DC breaker must withstand the residual overvoltage after the current interruption. The main contents of this paper are to ${\cdot}$ Explain the theoretical background for the design of DC circuit breaker. ${\cdot}$ Develop the simulation model in PSIM of the real scaled DC circuit breaker for 1,800V DC railway. ${\cdot}$ Suggest design guidelines for the DC circuit breaker based on the experimental work, simulations and design process.

Experimental Studies on the Risk Assessment of Electrical Fire and Shock of LED Lighting for Outdoor (옥외용 LED 조명의 전기화재 및 감전 위험성 평가에 대한 실험적 고찰)

  • Kim, Hyang-Kon;Gil, Hyoung-Jun;Kim, Dong-Ook;Kim, Dong-Woo;Lee, Ki-Yoen;Moon, Hyun-Wook;Kim, Hyeog-Soo;Kim, Myung-Soo;Kim, Man-Geon
    • Congress of the korean instutite of fire investigation
    • /
    • 2011.04a
    • /
    • pp.77-97
    • /
    • 2011
  • In this paper, we studied risk assessments of electrical fire and shock of LED lightings for outdoor. We examined national regulations about the LED lighting for outdoor and analyzed the appearances and compositions of LED lightings. And, We experimented about water proof, line to line fault, line to line breakdowm, overvoltage, line to line leakage in overhead line or water of LED lighting. From experimental results, we know that there are risks of electrical fire and shock by abnormal conditions at the LED lighting. Therefore, the uses of protective devices and insulated type of converter are required for the electrical safety. We expect that the results of this study would be helpful for the improvement of regulations and standards for electrical safety and for the investigations of electrical accidents of LED lightings.

  • PDF

A Study on the Unification of The Grounding System of SeoulMetro due to Ageing (서울메트로 접지시스템의 경년변화에 따른 개선 접지 기준)

  • Min Byung-Hoon;Kim Gyunl-Sig;Chung Young-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.394-400
    • /
    • 2006
  • Since Seoulmetro built the first line of electric railway at seoul 1974, the passengers of railway have been increased rapidly, and electric railway requires more electric power for the greater capacity of transport. It is important that we prevent the accidents related with the subway, because all systems of subway are constructed in artificial underground structure. Since the previous versions of the earth system were built to meet the old standards of the electric facility for the lightning, some accidents related with the DC earth fault are causing secondary damages to the electric equipments. So, the old grounding system must be improved, and new standards of grounding system are required. We compare the grounding systems of the domestic railway corporations and the accidents that are related with the grounding systems. And we give ideas to improve the grounding systems and present standards which are suitable to electric railway.

Analysis of Transient Characteristic in the Railway High Voltage Distribution Lines Using PSCAD/EMTDC at Method of Protection for One Line Ground Fault (PSCAD/EMTDC를 이용한 철도 고압 배전계통의 과도특성 해석 및 1선 지락사고에 대한 보호방안)

  • Park, Kye-In;Chang, Sang-Hoon;Choi, Chang-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.51-56
    • /
    • 2008
  • High quality power supplying of high voltage distribution lines electric railway system is the important function, high voltage distribution system is complicated witch is compose with distribution line, circuit break, protection facilities and so on. Among this components, role of substation is most important for elevation of reliability in electric power system. Therefore, the enhanced reliability considering the preventive inspection, repair work replacement is necessary. This paper proposes protection method in railway high voltage distribution lines. we model distribution system using PSCAD/EMTDC(Power System Computer Aided Design/Electro Magnetic Transients DC Analysis Program) and extract various fault data. In conclusion this methods can protection of ground fault.

Analysis on the fault caused by serge in High Speed Line Signaling Room (고속선 신호기계실의 낙뢰에 의한 장애 분석)

  • Kim, Yong-Kyu;Baek, Jong-Hyun;Yang, Doh-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1065-1066
    • /
    • 2008
  • 2005년 8월 서울기점 54km에 위치한 고속선 신호기계실에 낙뢰가 발생함에 따라 신호기계실 내부에 설치된 방호스위치 외부회로의 전원공급용 DC/DC 컨버터가 소손 되었다. 그 결과, 폐색구간 작업자 보호용 방호스위치, 역구내 작업자 보호용 방호스위치 계전기 낙하가 발생하여 운행중인 고속선 열차의 정지 속도 코드가 차량에 현시 되었다. 이후 장애 절차에 따라 장애 유지보수가 완료되었지만, 상행선 7개, 하행선 3개 열차가 17분${\sim}$58분간 운행 지연되었다. 본 논문에서는 이러한 낙뢰 장애사고를 분석함으로서 신뢰할 수 있는 신호기계실 낙뢰 피해 방지 방안에 대해 분석하였다.

  • PDF

On the Current Limiting Characteristics and Parameters of Superconducting Fault Current Limiter Introduced to 345kV Electric Power System due to Resistive-Type, Reactive-Type and Their Performance Comparison (유도형과 저항형 초전도한류기의 파라메타를 고려한 전력계통도입효과의 분석 및 성능평가에 관한 연구)

  • 홍원표;김용학
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.74-83
    • /
    • 2002
  • The maximun short circuit current of modern power system is becoming so large that circuit breaker is not expected to be able to shut down the current in the future In order cut over-currents, a system composed of a superconducting fault current limiter(SFCL) and traditional breaker seems to provide a promising solution for furture power operation. In present paper, three line-to-ground fault is assumed to happen at the center of 345kV transmission lines in a large capacity electric power system. The superconducting fault current limiter was represented using a commutation type, which consists of a non-inductive superconducting coil and current limiting element (resistor or reactor). from the viewpoint of current limiting performance, the prevention of the voltage drop at the load bus and comparision characteristics for two type SFCL. Desired design specification and operation parameters of SECL were also given qualitatively by the performance.

Analysis of Control Algorithm for Instantaneous Voltage Sag Corrector (순시적인 전압 sag 보상기에 대한 제어 알고리즘의 해석)

  • 이상훈;김재식;최재호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.173-179
    • /
    • 2001
  • This paper represents the control algorithm of the instantaneous voltage sag corrector for the power quality enhancement in distribution line. Especially, a novel detection technique of the symmetrical components is proposed for the analysis of the three-phase unbalanced and asymmetrical problems caused by the single line ground fault which is he most frequent event. This proposed method is based on the simple calculation and the control references of the symmetrical components for voltage compensation can be described as dc value without any other phase detection procedure. And also, for the generation of the reference voltages, the UF and MF defined by IEC is considered. Using this proposed control algorithm, the compensator has the fast dynamic characteristics and the THD of the compensated voltage waveform is very low. Finally, the validity of the proposed algorithm is proved by the PSCAD/EMTDC simulation and experimental results.

  • PDF

Optimal Design of a Follow Current Disconnector for DC Arresters in Traction Vehicles

  • Wang, Guoming;Kim, Sun-Jae;Park, Seo-Jun;Kil, Gyung-Suk;Ji, Hong-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.289-292
    • /
    • 2016
  • This paper dealt with the optimal design of a follow current disconnector for DC arresters used in electric traction vehicles. The disconnector separates the ground lead from an arrester to prevent a line-to-ground fault of an aged arrester and should not affect the operation and function such as the reference and the clamping voltage of the connected arrester. The designed disconnector is composed of a resistor, a spark gap, and a cartridge. The results showed that the sparkover voltage increased with the gap distance whereas the reference voltage was almost the same as that without the disconnector. The sparkover voltage was 3.95 kV when the gap distance was 0.5 mm. Regardless of the gap distance, the reference and the clamping voltage of the assembled disconnector with an arrester were measured to be the same as those of the arrester alone.