• Title/Summary/Keyword: DC Sputtering

Search Result 1,032, Processing Time 0.025 seconds

A Study of MgO Thin Film′s Properties Fabricated by ICP Magnetron Sputtering Method (유도결합 플라즈마 마그네트론 스퍼터링에 의한 MgO 박막의 특성 연구)

  • 김선호;주정훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.169-174
    • /
    • 2004
  • MgO thin films were reactively deposited using an internal inductively coupled plasma assisted sputtering method varying reactive gas ratio to get stoichiometric film composition, and bipolar dc substrate bias to suppress micro arcs. The minimum frequency required for arc suppression was about 10KHz depending on ICP power. Their crystallinity was analyzed using X-ray diffraction and surface morphology using AFM. The surface was very smooth with rms roughness less than 0.42nm. The preferred orientation of the films were changing from (200) to bulk-like characteristics as Ar: $O_2$ratio was controlled to 10 : 2. Optical emission spectroscopy revealed that there were two distinct discharge modes: a blue one and a green one, where enhanced emission from Ar and Mg were observed. This cannot simply be understood by metallic or oxide mode of reactive sputtering due to ICP coupled to magnetron discharge.

Electrical and Structural Properties of Ti Thin Films on Al2O3 Substrate (Al2O3 기판에 형성된 Titanium 박막의 전기적 및 구조적 특성)

  • 정운조;양현훈;임정명;김영준;박계춘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.753-758
    • /
    • 2003
  • Ti films were deposited onto 100${\times}$100 mm alumina substrates using dc magnetron sputtering under the following conditions; substrate temperature of R.T~400 $^{\circ}C$, annealing temperature of 100~400 $^{\circ}C$, and sputtering gas pressure of 4${\times}$10$^{-3}$ Torr~4${\times}$10$^{-2}$ Torr. And the films were examined by X-ray diffraction analysis (XRD), scanning electron microscopy(SEM) and 4-point measurement system. The best electrical and structural properties was obtained by substrate temperature of ~200 $^{\circ}C$, target-substrate distance of ~14 cm and sputtering pressure of ~1${\times}$10$^{-2}$ Torr. Also at that condition the most excellent adhesion was observed.

Crystallographic properties of AIN thin film prepared by lacing targets sputtering method (대향타겟식 스퍼터법으로 제작된 AIN 박막의 결정학적 특성)

  • 양진석;금민종;손인환;최형욱;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.464-466
    • /
    • 2000
  • AIN thin films have been prepared by reactive sputtering method, using facing targets sputtering system with a DC power supply which can deposit a high quality thin film and control deposition condition in all range of nitrogen. The crystallographic characteristics of AIN thin films on N$_2$/Ar ratio was investigated by alpha-step and X-ray diffraction. As a result, the AIN film deposited at the pressure ratio of the nitrogen of 30% revealed strong X-ray diffraction intensity under substrate temperature 25$^{\circ}C$ and applied current 0.4A.

  • PDF

Electrical and Optical Properties of ITO Thin Films Prepared on the PET Substrate (PET 기판 위에 증착된 ITO 투명전도막의 전기적.광학적 특성)

  • Lee, Jae-Hyeong;Jung, Hak-Gi;Lim, Dong-Gu;Yang, Kea-Joon;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.176-179
    • /
    • 2003
  • ITO films on PET substrate were prepared by DC magnetron sputtering method using powdery target with different deposition conditions. In addition, the electrical and optical properties were investigated. As the sputtering power and working pressure were higher, the resistvity of ITO films increased. The optical transmittance deteriorated with increasing sputtering power and thickness. As the working pressure increased, however, the optical transmittance improved at visible region of light. From these results, we could deposited ITO films with $8{\times}10^{-3}\;{\Omega}-cm$ of resistivity and 80% of transmittance at optimal conditions.

  • PDF