• Title/Summary/Keyword: DC SQUID

Search Result 49, Processing Time 0.023 seconds

Fabrication and statistical characterization of Nb SQUID sensors for multichannel SQUID system

  • Kim, B.K.;Yu, K.K.;Kim, J.M.;Kwon, H.;Lee, S.K.;Lee, Y.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.62-66
    • /
    • 2020
  • We fabricated superconducting quantum interference devices (SQUIDs) based on Nb Josephson junctions, and characterized the key parameters of the SQUIDs. The SQUIDs are double relaxation oscillation SQUIDs (DROSs) having larger flux-to-voltage transfer coefficient than the standard DC-SQUIDs. SQUID sensors were fabricated by using Nb junction technology consisted of a DC magnetron sputtering and a conventional photolithography process. In multichannel SQUID systems for whole-head magnetoencephalography measurement with a helmet-type SQUID array, we need about 336 SQUID sensors for each system. In this paper, we fabricated a few hundred SQUID sensors, measured the critical current, flux modulation voltage and decided if each tested SQUID can be used for the multichannel systems. As the criterion for the acceptance of the sensors, we chose the critical current and amplitude of the modulation voltage to be 8 ㎂ and 80 ㎶, respectively. The average critical current of the SQUIDs was 10.58 ㎂. The typical flux noise of the SQUIDs with input coil shorted was 2 μΦ0/√Hz at white region.

Characterization of step-edge dc SQUID magnetometer fabricated on sapphire substrate (사파이어 기판 위에 제작된 step-edge dc SQUID magnetometer의 특성)

  • 임해용;박종혁;정구락;한택상;김인선;박용기
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.127-130
    • /
    • 2002
  • Step-edge dc SQUID magnetometers have been fabricated on sapphire substrate. Ce$O_{2}$ buffer layer and $YBa_{2}$$Cu_{3}$ $O_{7}$(YBCO) films were deposited in-situ on the low angle (~$35^{\circ}$)steps formed on the substrates. Typical 5-$\mu$m-wide junction has $R_{N}$ of 4 $\Omega$ and $I_{c}$ of 60 $\mu$A with $I_{c}$$R_{N}$ product of 240 $\mu$V at 77 K. According to applied bias current, depth of voltage modulation was changed and maximum voltage was measured 100~300 fT/$\checkmark$ Hz at 100 Hz, and about 1.5 pT/$\checkmark$ Hz at 1 Hz. For ac bias reversal method, field noise was decreased in the 1/f region. The QRS peak of magneto-cardiogram was measured 50 pT in the magnetically shielded room.

  • PDF

Nondestructive Evaluation System using SQUID in Magnetically Un-shielded Environment (비자기 차폐 환경에서의 SQUID를 이용한 비파괴 평가 시스템에 대한 연구)

  • Chung, Soon-Hee;Hwang, Yun-Seok;Choi, Hee-Seok;Kim, Jin-Tae;Lim, Hae-Ryong;Kim, In-Seon;Kwon, Hyuk-Chan;Park, Yong-Ki;Park, Jong-Chul;Lee, Soon-Gul;Lee, Dong-Hoon;Kim, Dong-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.54-57
    • /
    • 1999
  • 본 연구에서는 SQUID를 이용한 비파괴 평가 시스템을 제작, 측정하였다. 이 시스템은 비자기 차폐 환경에서 작동할 수 있도록 설계하였고, 측정 자기 센서로는 dc 및 rf-SQUID gradiometer를 사용하였다. 비자기 차폐 환경에서 ${\sim}$nT의 미세 자기 신호를 검출하였고, 공간적으로 변화하는 외부 자기 신호를 측정, 분석하였다. 또한, 측정된 자기 신호를 통해 dc-SQUID와 rf-SQUID에 대한 비교를 했다.

  • PDF

Review of low-noise radio-frequency amplifiers based on superconducting quantum interference device

  • Lee, Y.H.;Chong, Y.;Semertzidis, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2014
  • Superconducting quantum interference device (SQUID) is a sensitive detector of magnetic flux signals. Up to now, the main application of SQUIDs has been measurements of magnetic flux signals in the frequency range from near DC to several MHz. Recently, cryogenic low-noise radio-frequency (RF) amplifiers based on DC SQUID are under development aiming to detect RF signals with sensitivity approaching quantum limit. In this paper, we review the recent progress of cryogenic low-noise RF amplifiers based on SQUID technology.

Characterization of YBCO do SQUID fabricated on sapphire substrate for biomagnetic applications (생체자기 응용을 위한 사파이어 기판 위에 제작된 YBCO dc SQUID 의 특성)

  • Lim, Hae-Ryong;Kim, In-Seon;Kim, Dong-Ho;Park, Yong-Ki;Park, Jong-Chul
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.155-159
    • /
    • 2000
  • YBCO step-edge dc SQUID magnetometers on sapphire substrates have been fabricated. CeO2 buffer layer and YBCO films were deposited in situ on the low angle (${\sim}$35$^{\circ}$) steps formed on the sapphire substrates. Typical 5-${\mu}$m-wide junction has R$_n$ of 5 ${\omega}$ and I$_c$ of 50 ${\mu}$A with large I$_c$R$_n$ product of 250 ${\mu}$V at 77K. According to applied bias current, depth of voltage modulation was changed and maximum voltage was measured 16 ${\mu}$V. Field noise of do SQUID was measured 100${\sim}$300 fT/${\surd}^{Hz}$ in the 1 $^{kHz}$, and about 1.5 pT/${\surd}^{Hz}$ in the 1/f region. For ac bias reversal method, field noise was decreased in the 1/f region. The QRS peak of magnetocardiogram was measured 50 pT in the magnetically shielded room.

  • PDF

Susceptometry Application of Portable HTS SQUID-Based System

  • Timofeev, V.P.;Kim, C.G.;Shnyrkov, V.I.
    • Journal of Magnetics
    • /
    • v.3 no.3
    • /
    • pp.86-88
    • /
    • 1998
  • A portable RF HTS SQUID-based susceptometer was used for small size magnetized sample testing in weak DC (up to 200A/m) and AC (up to 4 A/m) magnetic fields. The system resolution for the magnetic moment is of the order of $1.6{\times}10^{-10} A.m^2$. The measured DC susceptibility of a tested sample agrees well with the value obtained by using a commercial liquid helium susceptometer.

  • PDF

Gain characteristics of SQUID-based RF amplifiers depending on device parameters

  • Lee, Y.H.;Yu, K.K.;Kim, J.M.;Lee, S.K.;Chong, Y.;Oh, S.J.;Semertzidis, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.10-14
    • /
    • 2019
  • Radio-frequency (RF) amplifiers based on direct current (DC) superconducting quantum interference device (SQUID) have low-noise performance for precision physics experiments. Gain curves of SQUID RF amplifiers depend on several parameters of the SQUID and operation conditions. We are developing SQUID RF amplifiers for application to measure very weak RF signals from ultra-low-temperature high-magnetic-field microwave cavity in axion search experiments. In this study, we designed, fabricated and characterized SQUID RF amplifiers with different SQUID parameters, such as number of input coil turn, shunt resistance value of the junction and coupling capacitance in the input coil, and compared the results.

Review of SQUID Sensors for Measuring Magnetocardiography (심자도 측정을 위한 SQUID 센서 기술의 개발 현황)

  • Lee, Y.H.;Kim, J.M.;Yu, K.K.;Kim, K.;Kwon, H.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Measurement of magnetic signals generated from electric activity of myocardium provides useful information for the functional diagnosis of heart diseases. Key technical component of the magnetocardiography (MCG) technology is SQUID. To measure MCG signals with high signal-to-noise ratio, sensitive SQUID magnetic field sensors are needed. Present magnetic field sensors based on Nb SQUIDs have field sensitivity good enough to measure most of MCG signals. However, for accurate measurement of fine signal pattern or detection of local atrial fibrillation signals, we may need higher field sensitivity. In addition to field sensitivity, economic aspect of the SQUID system is also important. To simplify the SQUID readout electronics, the output voltage or flux-to-voltage transfer of SQUID should be large enough so that direct measurement of SQUID output can be done using room-temperature preamplifiers. Double relaxation oscillation SQUID (DROS), having about 10 times larger flux-to-voltage transfers than those of DC-SQUIDs, was shown to be a good choice to make the electronics compact. For effective cancellation of external noise inside a thin economic shielded room, first-order axial gradiometer with high balance, simple structure and long-baseline is needed. We developed a technology to make the axial gradiometer compact using direct bonding of superconductive wires between pickup coil and input coil. Conventional insert has mechanical support to hold the gradiometer array, and the dewar neck has equal diameter with the dewar bottom. Boiling of the liquid He can generate mechanical vibrations in the gradiometer array due to mechanical connection structure. Elimination of the mechanical support, and direct mounting of the gradiometer array into the dewar bottom can reduce the dewar neck diameter, resulting in the reduction of liquid He consumption.