• 제목/요약/키워드: DC Power

검색결과 6,485건 처리시간 0.027초

A Trade-Off between the Efficiency, Ripple and Volume of a DC-DC Converter

  • Taherbaneh, Mohsen;Rezaie, Amir H.;Ghafoorifard, Hasan;Mirsamadi, Maddad;Menh, Mohammad B.
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.621-631
    • /
    • 2011
  • In space qualified DC-DC converters, optimization of the following electrical characteristics is of greater interest in comparison with other specifications; power loss/efficiency, output voltage ripple and volume/weight. The main goal of this paper is to present an appropriate solution for optimizing the above mentioned characteristics. For this purpose, a comprehensive power loss model of a DC-DC converter is fully developed. Proper models are also demonstrated for assessment of the output voltage ripple and the utilized transformer volume as the bulkiest component in a DC-DC converter. In order to provide a test bed for evaluation of the proposed models, a 50W push-pull DC-DC converter is designed and implemented. Finally, a novel cost function with three assigned weight functions is proposed in order to have a trade-off among the power loss, the output voltage ripple and the utilized transformer volume of the converter. The cost function is optimized for applications in which volume has the highest priority in comparison with power loss and ripple. The optimization results show that the transformer volume can be decreased by up to 51% and this result is verified by experimental results. The developed models and algorithms in this paper can be used for other DC-DC converter topologies with some minor modifications.

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

고전력밀도 AC/DC Adapter를 위한 off-time 제어법 (Off-time Control Method for High Power Density AC/DC Adapter)

  • 강신호;장준호;홍성수;이준영
    • 전력전자학회논문지
    • /
    • 제12권6호
    • /
    • pp.510-516
    • /
    • 2007
  • 본 논문에서는 더 높은 에너지 효율을 요구하는 전자 기기들의 사용에 따른 고전력 밀도 AC/DC adapter를 위한 향상된 제어 방법을 제안한다. PFC (Power Factor Correction) 토폴로지는 BCM (Boundary Conduction Mode)제어 방식을 적용한 부스트 토폴로지를 기본으로 하였으며, DC/DC 토폴로지는 50% 고정 duty법과 함께 새롭게 제안된 Off-time 제어법을 적용한 하프브릿지 토폴로지를 기본으로 하였다. 이는 반도체 소자와 마그네틱 소자의 크기를 줄이는데 용이하다. 85W급 AC/DC 어뎁터(18.5V/4.6A)를 설계하여 실험한 결과 90%의 효율과 $36W/in^3$의 전력밀도가 측정되었고 무부하시 전력 손실은 0.5W를 달성하였다.

고전력밀도 AC/DC 어댑터의 설계 (Design of High Power Density AC/DC Adapter)

  • 이준영
    • 전력전자학회논문지
    • /
    • 제15권4호
    • /
    • pp.259-265
    • /
    • 2010
  • 본 논문에서는 더 높은 에너지 효율을 요구하는 전자 기기들의 사용에 따른 고전력 밀도 AC/DC 어댑터의 구조를 제안한다. PFC (Power Factor Corrector) topology는 BCM (Boundary Conduction Mode)제어 방식을 적용한 Boost topology를 기본으로 하였으며, DC/DC topology는 주파수제어를 적용한 LLC 공진 컨버터를기본으로 하였다. 이는 반도체 소자 및 마그네틱 소자의 크기를 줄이는데 용이하다. 85W급 AC/DC adapter (18.5V/4.6A)를 설계하여 실험한 결과 $90V_{rms}$의 입력전압에서 90%의 효율과 $36W/in^3$의 전력밀도가 측정되었고 무부하시 전력 손실은 0.5W를 달성하였다.

에너지회생스너버를 적용한 하이브리드 3레벨 DC/DC 컨버터 (Hybrid Three-Level DC/DC Converter using an Energy Recovery Snubber)

  • 허예창;주종성;말론;김은수;강철하;이승민
    • 전력전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.36-43
    • /
    • 2017
  • This paper describes a hybrid multi-output three-level DC/DC converter suitable for a wide, high-input voltage range of an auxiliary power supply for a high-power photovoltaic generating system. In a high-power photovoltaic generating system, the solar panel output voltage depends on solar radiation quantity and varies from 450Vdc to 1100Vdc. The proposed hybrid multi-output three-level DC/DC converter, which is an auxiliary power supply, would be used as power source for control printed circuit boards and relay and cooling fans in a high-power photovoltaic generating system. The proposed multi-output ($24V_{DC}/30A$, $230V_{DC}/5A$) hybrid three-level boost converter, which uses an energy recovery snubber, is controlled by variable-frequency and phase-shifted modulations and can achieve zero-voltage switching with all operating conditions of input voltage and load range. Experimental results of a 2kW prototype are evaluated and implemented to verify the performance of the proposed converter.

3상 계통연계형 태양광발전시스템의 태양전지 출력단 전압제어에 관한 연구 (A Study on Solar Cell Output Voltage Control for 3-Phase Utility Interactive Photovoltaic System)

  • 남종하;강병희;고재석;최규하;신우석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.571-575
    • /
    • 2002
  • Generation of electrical energy faces many problems today. Solar power converters were used to convert the electrical energy from the solar arrays to a stable and reliable power source. The object of this paper is to analyze and design DC-DC converters in a solar energy system to investigate the performance of the converters. A DC-DC converter can be commonly used to control the power flow from solar cell to load and to achieve maximum power point tracking(MPPT), DC-AC converter can also be used to modulate the DC power to AC power being applied on common utility load. A DC-DC converter is used to boost the solar cell voltage to constant 360(V) DC link and to ensure operation at the maximum power point tracking, If a wide input voltage range has to be covered a boost converter is required. In this paper, author described that simulation and experimental results of PV system contain solar modules, a DC-DC converter(boost type chopper), a DC-AC converter (3-phase inverter) and resistive loads.

  • PDF

패시브 공진 스너버를 이용한 플라이백형 ZVS PWM DC-DC 컨버터의 특성해석 (Characteristic Analysis of Flyback Type ZVS PWM DC-DC Converter Using Passive Resonant Snubber)

  • 김정도;문상필;박한석
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.158-164
    • /
    • 2016
  • In this paper, a high frequency flyback type zero voltage soft switching PWM DC-DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of active power switches and a flyback high frequency transformer. In addition to these, passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three winding auxiliary high frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC-DC converter from an experimental point of view and the comparative electromagnetic conduction and radiation noise characteristics of both DC-DC power converter circuits are also depicted.

실시간 DC 계통해석 응용프로그램을 이용한 DC 배전망 전압제어 실증 연구 (Demonstration of Voltage Control of DC Distribution System Using Real-time DC Network Analysis Applications)

  • 김홍주;조영표;조진태;김주용
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권4호
    • /
    • pp.275-286
    • /
    • 2019
  • 본 논문은 DC (Direct Current) 배전망 혹은 DC 마이크로그리드 운영을 위한 실시간 DC 계통해석 응용프로그램의 개발에 대한 내용을 다룬다. 응용프로그램은 중앙 에너지 관리시스템(EMS: Energy Management System)에 탑재되어 운영자에게 실시간으로 운영 솔루션을 제공한다. DC 배전계통을 해석하기 위한 프로그램의 구성 및 시퀀스를 제안한다. 각 프로그램의 알고리즘과 AC 계통 프로세스와의 차이점을 분석한다. 한국전력공사 고창전력시험센터 내 DC 배전망 실증사이트를 소개하고, EMS 구축 내용을 기술한다. 개발된 DC 계통해석 응용프로그램을 실증 사이트 EMS에 탑재하여, 검증 시험을 수행한다. DC 배전망 전압 제어를 위한 시험 시나리오를 구성에 대해 논한다. 마지막으로 실증시험 결과 측정 데이터, 응용프로그램 결과 데이터를 PSCAD/EMTDC를 이용한 오프라인 시뮬레이션 결과값과 비교 분석하여 정합성을 검증한다.

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.

DC 48[V] 통신용 전원 장치의 특성 (Characteristics of DC 48[V] telecommunication power supply)

  • 정현태;조만철;윤영태;김주용;문상필;서기영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.902-904
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a practical point of view that 92.1[%]of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF