• 제목/요약/키워드: DC Motor Drive System

검색결과 309건 처리시간 0.03초

교류 전동기 구동 시스템에서 인버터의 입력전력 추정 (Input Power Estimation of an Inverter in AC Motor Drive System)

  • 김도현;김상훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.376-377
    • /
    • 2019
  • 본 논문에서는 교류 전동기 구동 시스템에서 인버터의 입력전력 추정 기법을 제안하였다. 인버터의 입력전력 정보를 얻기 위해서는 DC link 전압 센서 및 입력전류 센서와 같은 측정 장치가 요구되는데, 전동기의 상전류 정보 및 인버터의 스위칭 패턴을 이용하면 입력전류 센서를 사용하지 않고 인버터의 입력전력을 추정할 수 있다. 1kW SPMSM(Surface mounted Permanent Magnet Synchronous Motor) 구동 시뮬레이션 및 실험을 통해 입력전력 추정 기법의 유효성을 확인하였다.

  • PDF

${\mu}$- processor를 이용한 직류전동기 속도제어시스템의 개선방안 (Methods for Improvement of Speed Control System for D.C Motors using ${\mu}$ -processor)

  • 김진성;김필수;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.105-108
    • /
    • 1988
  • In this paper, a control system design method is proposed for DC motor drive. A state space model is used to control sysytem and for closed loop system the technique of pole assignment is applied. The control system is designed with state feedback theory and to improve the response further more feedforward theory is applied to control system. The microprocessor as a controller and the interfaces in the system are proposed. Digital simulation results for step changes in reference velocity and load torque are shown.

  • PDF

Design and Application of a Passive Filter Control System

  • Jeon, Jeong-Chay;Yoo, Jae-Geun;Lee, Sang-Ick
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.152-158
    • /
    • 2004
  • The passive filter is economic and efficient in suppressing harmonics but it may cause resonance problems and its performance is constantly dependent on power system impedance or working conditions of loads. This paper presents the DSP (Digital Signal Processor)-based control system, which automatically controls the passive filter in order to solve these problems. The control system can automatically control the passive filter according to working conditions of loads and measured harmonics, reactive power, power factor and so on. Experimental results in the power system using the 100HP DC motor drive are presented in order to verify the performance of the control system.

LabVIEW의 모델기반 제어기 설계와 Compact RIO를 이용한 직류전동기 구동 시스템 (DC Motor Drive System Using Model Based Cotroller Design of LabVIEW and Compact RIO)

  • 송의섭;이희준;이용석;지준근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1956-1957
    • /
    • 2007
  • 본 논문에서는 모델기반의 제어기 설계 프로그램인 National Instruments(NI)사의 System Identification Toolkit과 Control Design Toolkit, Simulation module을 사용하여 기존의 제어기 설계방식 보다 쉽고 편리하게 제어기를 설계할 수 있었다. 직류전동기의 속도 제어시스템을 구현하기 위해서 하드웨어는 NI사에서 제공하는 실시간 제어기(Real-Time Controller:RT) CompactRIO를 사용하였다. 먼저는, 테스트 입력 신호를 전동기에 인가하고 얻은 출력신호를 통해 제어대상 플랜트인 직류전동기 구동시스템의 전달함수를 구할 수 있었다. 다음으로는 원하는 제어응답성능을 갖는 극점, 영점 제어기를 설계한 후, 모의실험을 통해 속도제어응답을 확인할 수 있었고, 실시간프로그램으로 다운로드하여 실제 전동기 구동시스템의 실험을 통해서 설계된 속도제어기의 응답 결과를 모의실험과 비교하여 검증하였다.

  • PDF

약계자영역을 포함한 BLDC 전동기의 새로운 토크 리플 최소화 방법 (Torque Ripple Minimization of BLDC Motor Including Flux-Weakening Region)

  • 원태현;박한웅;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.445-454
    • /
    • 2002
  • Torque ripple control of brushless DC motors has been the persisting issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise should be minimized. In this paper, a novel approach to achieve the ripple-free torque control with maximum efficiency based on the d-q reference frame is presented and analyzed. The proposed approach can provide the optimized phase current waveforms over wide speed range incorporating cogging torque compensation without an access to the neutral point of the motor windings. Moreover, the undesirable errors caused by the assumptions such as 3 phase balance or symmetry of the phase back EMF between electrical cycles, which are related with the manufacturing imperfections, can be also eliminated. As a result, the proposed approach provides a simple and clear way to obtain the optimal motor excitation currents. A hysteresis current control system is employed to produce high-frequency electromagnetic torque ripples for compensation. The validity and applicability of the proposed control scheme to real situations are verified through the simulations and experimental results.

EKF를 이용한 BLDC 모터 구동기 인버터의 고장 검출 및 분리 (Fault Detection and Isolation for the Inverter of BLDC Motor Drive using EKF)

  • 김선기;성상만;강기호
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.706-712
    • /
    • 2014
  • The inverters used to drive Brushless DC motors (BLDC) include switching devices such as FETs and the faults in FETs cause severe performance degradation in systems where a BLDC acts as actuator. This paper presents a fault detection and isolation method for the FETs of an inverter for BLDC motor control systems, which is based on the EKF (Extended Kalman filter). Firstly, an equivalent circuit model for a BLDC motor plus its inverter system was derived. Secondly, a state-space equation was established, where the on-resistance of the FETs is expressed as a state variable and the EKF equation estimates the on-resistance. If the estimated resistance differs greatly from the known value, it can be asserted that there is a fault on that FET. Thirdly, the local convergence of the established EKF was proved. Finally, through the experiments, the performance of the proposed method was verified. The results show that the on-resistance is estimated close to the value specified in the FET data sheet in normal operation, whereas the estimated resistance is a much larger value than the normal one in case an FET fault occurs. Therefore, it is confirmed that the proposed fault detection and isolation method works appropriately in real systems.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

High Performance Switched Reluctance Motor Drive for Automobiles using C-dump Converters

  • Song Sang-Hoon;Yoon Yong-Ho;Lee Tae-Won;Kim Yeun-Chung;Won Chung-Yuen
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.992-996
    • /
    • 2004
  • Small electric motors in an automobile perform various tasks such as engine cooling, pumping, and in heating, ventilating, and air-conditioning (HVAC) system. At present, most of dc motors are supplied by 12V or 24V batteries. However, DC motors surfer from lack of efficiency, low life cycles and unreliability. Therefore, there is a growing interest in substituting DC motors for advanced AC motors including switched reluctance motors. Although there are several other forms SRM converters, they are either unsatisfactory to the control performance or unsuitable for the 12V-battery powered 3-phase SRM drives. Taking into account the requirement for effective operation and simplicity structure of converter in the limited internal environment of automobiles, the author inclines toward selecting the modified C-dump converter as well as the energy efficient C-dump converter. This is so that more economical and efficient converter topology in automobile industries can be utilized. This paper describes the foundation for the design and development of a 12V-250W-3000rpm SRM drives for automobiles. Furthermore, complete circuit, computer simulation and experiment results are presented to verify the performance of the C-dump converters.

  • PDF

피드포워드를 이용한 속도리플 자동 보상 알고리즘 (Automatic Velocity Ripple Compensation Algorithm by Feedforward Control)

  • 한지희;김정한
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.951-959
    • /
    • 2013
  • In order to improve the speed performance of the direct drive mechanical systems, a comprehensive analysis of the velocity ripples of blushless DC motors should be required. Every motor has a certain level of torque ripples when it generates power, and the generated torque ripple also makes the velocity ripples in the final output stage in speed control system. In this paper, a novel algorithm for reducing velocity ripples is proposed based on the modeling of torque ripples for BLDC motors. Various algorithms have been made for torque ripples, but usually they should be installed inside the amplifier logic, result in the difficulties of flexibility for various kinds of torque ripples. The proposed algorithm was developed for being ported in the controller not the amplifier, and it has the capability of the automatic compensation adjustment. The performance of the proposed algorithm was verified by effective simulations and experiments.

High-efficiency Operation of Switched Reluctance Generator based on Current Waveform Control

  • Li, Zhenguo;Yu, Siyang;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.120-126
    • /
    • 2013
  • The main aim of this paper is to expound high-efficiency operation of Switched Reluctance Generator (SRG) based on the current waveform. For this purpose, theoretical analysis of the copper loss and iron loss of the system is done first. Then, necessary simulation is done to find the variation trend of the copper loss and iron loss with the variation of the current waveform at the same output power. Finally, the best current waveform which can make the system operate with high efficiency is obtained by considering the influence of these two kinds of loss. In order to verity the simulation results, the experimental platform of DC motor-SRG is built and the modified angle position control (APC) method which can specify the current shape optionally is presented. By comparing the system efficiency at the three kinds of typical current waveform, the correctness and feasibility of the theory is verified. The proposed method is simple, reliable, and easy to achieve.