• 제목/요약/키워드: DC Motor Drive System

Search Result 309, Processing Time 0.029 seconds

Design and Implementation of integrated drive circuit for a small BLDG Motor (드라이브 내장형 소형 BLDC 모터의 설계와 구현)

  • Choi, J.H.;Lee, J.B.;Rhyu, S.H.;Chung, J.K.;Sung, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.170-172
    • /
    • 2003
  • Among low power servo applications, classical DC motors are very popular because they are reasonably cheap and easy to control. The main disadvantage is the mechanical collector which has only a limited life period. Also, brush sparking can destroy the rotor coil, generate EMC problems. So permanent magnet brushless do motors and drives are being used increasingly in a wide range of applications. This has been made possible with the advantages of high performance permanent magnets with high coercively and residual magnetic, which make it possible for the PM to have superior power density, torque to inertia ratio and efficiency, when compared to an induction or conventional dc machine. This paper presents the design of a PM brushless dc motor drive simplistically operates as a classical dc motor. The BLDC motor drive system for this paper composes to the power integrated circuits, the one chip device. And several simple semiconductors add to drive system for a motor drive system simplistically operates as a conventional dc motor. Test results confirmed the feasibility of the proposed motor drive system design.

  • PDF

A Study on PLL Speed Control System of DC Servo Motor for Mobile Robot Drive (자립형 이동로봇 구동을 위한 직류 서보전동기 PLL 속도제어 시스템에 관한 연구)

  • 홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.60-69
    • /
    • 1993
  • The speed control associated with dc servo motors for direct-drive applications of mobile robot is considered in this study. Robot is moved by power wheeled steering of two dc servo motors mounted to it. In order to cooperate with micro-computer and to achieve the high-performance operation of dc servo motor, speed control system is composed of a digital Phase Locked Loop and H-type drive circuit. And the motor is driven by Pulse Width Modulations. In controlling PWM, it is modified to compose of H-type drive circuit with feedback diodes and switching transistor and design of control sequence so that it may show linear characteristics. As a result, speed characteristics of motor showed linear features. In order to get data on design of PLL control system, the parameters of 80[W[ motor & robot device is measured by simple software control. The PLL speed control system is schemed and designed by leaner drive circuit and measured parameters. A complete speed control system applied to 80[W] dc servo motor showed good linearity, stability and high response. Also, it is verified that the PLL speed control system has good compatibility as a mobile robot driver.

  • PDF

A Study on Driving Motor Performance Comparison for Load Efficiency Improvement of a Bicycle Locker System (자전거 거치대 잠금장치의 부하시 효율개선을 위한 구동모터성능비교에 관한 연구)

  • Han, Ki-Soo;Won, Sung-Hong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.175-180
    • /
    • 2013
  • This paper presents the design and implementation of a Bicycle Locker System. Generally DC motor has been used to control a Bicycle Locker System, but DC motor system requires frequent maintenances and its power efficiency is comparatively poor especially under heavy load conditions. In order to improve this difficulties, this paper adopts BLDC motor for a Bicycle Locker System and its motor controller is developed. The performances of locker units are compared between DC motor unit and BLDC motor unit. The motor power consumptions between two motors are discussed. Test results verify that power efficiency of the suggested BLDC drive unit is considerably improved compared to the DC drive unit with load condition.

Indirect Measurement of Auto Screw Drive's Torque Using Current Signals of DC Motor (DC 모터 전류 신호를 이용한 자동나사체결기 토크의 간접측정)

  • 이정윤;이정우;이준호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2004
  • The main objective of the research is to Propose an algorithm that to estimate the screwing torque from parameters of DC motor current without using any stain gage and torque cell. The auto screw drive system is divided into two parts, one is the DC motor ind the other is mechanical part in which the friction torque and damping ratio are a function of rotational of spindle electro motive force constant. The torque is estimated from the friction torque. The research is concerned with applying the method to an auto screw drive and the advantages and limitations are also discussed in this paper.

The Energy Saving for Separately Excited DC Motor Drive via Model Based Method

  • Udomsuk, Sasiya;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.470-479
    • /
    • 2016
  • The model based method for energy saving of the separately excited DC motor drive system is proposed in the paper. The accurate power loss model is necessary for this method. Therefore, the adaptive tabu search algorithm is applied to identify the parameters in the power loss model. The field current values for minimum power losses at any load torques and speeds are calculated by the proposed method. The rule based controller is used to control the field current and speed of the motor. The experimental results confirm that the model based method can successfully provide the energy saving for separately excited DC motor drive. The maximum value of the energy saving is 48.61% compared with the conventional drive method.

Development of Electric Drive system for Fuel Cell Electric Vehicle (연료전지차용 전기구동시스템 개발)

  • Kim, Jae-Kwang;Lee, Hyeoun-Dong;Yoo, Ki-Ho;Lim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.546-549
    • /
    • 2008
  • Hyundai Motor Company has made an effort to develop fuel cell electric vehicle and its subsystem in recent years. This paper deal with the development of electric drive system applied to Hyundai's fuel cell electric vehicle. This system is composed of three main components such as motor, inverter and DC/DC converter. The specifications of each system is introduced briefly and experimental result of its main components is presented. In addition, we introduce the development status of power semiconductor device, film capacitor, inductor and permanent magnet.

  • PDF

DC Motor Drive System Using Model Based Cotroller Design of LabVIEW and Compact RIO (LabVIEW의 모델기반 제어기 설계와 Compact RIO를 이용한 직류전동기 구동 시스템)

  • Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.352-359
    • /
    • 2008
  • This paper presents a controller implementation using model based controller design programs-System Identification Toolkit, Control Design Toolkit, Simulation module. This method is easier and simpler than conventional controller design method. To implement speed control system of DC motor, a CompactRIO, Real-Time(RT) cntroller provided by NI(National Instruments), is used as hardware equipment. Firstly transfer function of DC motor drive system, which was a control target plant, can be acquired through System Identification Toolkit by using test input signal applied to motor and output signal from motor. And designing of pole-zero compensator satisfying desired control response performance through Control Design Toolkit, designed speed control response can be tested through Simulation Module. Finally LabVIEW program is converted to real-time program and downloaded to CompactRIO real-time controller Through experimental results to real DC motor drive system, designed speed control response is compared to simulation results.

A Study on the Development of Sensorless Drive System for Brushless DC Motor of Electrical Vehicle (전기자동차용 브러시리스 직류 전동기의 센서리스 드라이브 개발에 관한 연구)

  • 김종선;유지윤;배종포;서문석;최욱돈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.336-343
    • /
    • 2003
  • Generally, brushless DC motor(BLDCM) driving system uses hall sensors or encoders as the mechanical position or speed sensors. It is necessary to achieve the information's of rotor position for driving trapezoidal type brushless DC motor without any position sensor. This paper proposes a sensorless driving system with absolute rotor position detecting circuit which acquires both commutating phase and commutating time by analyzing motor phase voltages. Proposed system is applied to a 10k[W] rating motor which actually used in Hybrid Electric Vehicles. The experimental results will show the validity of the proposed system and the practical use of proposed sensorless drive.

THE DYNAMICAL PERFORMANCE OF CONTROLLED FLYWHEELING DUAL CONVERTER-FED DC MOTOR DRIVES WITH SIMULATANEOUS CONTROL AND FUZZY PI CONTROLLER

  • Soltani, Jafar;Sojdei, Jamshid
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.414-419
    • /
    • 1998
  • This paper describes the dynamical performance of a four-quadrant circulation current mode control of dc motor drive, using the controlled flywleeling technique, a four-quadrant closed-loop control drive with an inner current control loop and a speed fuzzy PI regulator is designed. The obtained computer simulation results of a dc motor drive below and above the base speed are demonstrated. These result show that compare to a conventional dual-converter-fed dc motor drive with simultaneous control, the overal system performance has been improved and also, agood stability and robstness has been achieved.

  • PDF

Embedded Control System of DC Motor Drive System Using Model Based Controller Design in MATLAB/SIMULINK (MATLAB/SIMULINK의 모델기반 제어기 설계를 이용한 직류전동기 구동 시스템의 임베디드 제어 시스템)

  • Choi, Seung-Pil;Lee, Yong-Seok;Ji, Jun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1954-1955
    • /
    • 2007
  • This paper presents a modeling method of speed controller for DC motor drive system by using the Embedded Target for TI C2000 DSP in MATLAB/SIMULINK. Speed controller is easily designed and implemented by using the MATLAB/SIMULINK program, and speed control response and stability of the DC motor can be improved. Feedback of motor speed is processed through C28x QEP(Quadrature Encoder Pulse) from encoder pulse. The controller is designed as PI speed controller. Simulation program is drawn using SIMULINK. Then a real-time program for speed control of the DC motor is downloaded into the eZdsp F2811 control board. Speed control response is verified through simulations and experiments.

  • PDF