• Title/Summary/Keyword: DC Motor Drive

Search Result 469, Processing Time 0.029 seconds

DC Motor Drive System Using Model Based Cotroller Design of LabVIEW and Compact RIO (LabVIEW의 모델기반 제어기 설계와 Compact RIO를 이용한 직류전동기 구동 시스템)

  • Song, Yui-Sub;Lee, Hui-Jun;Lee, Yong-Suk;Ji, Jun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1956-1957
    • /
    • 2007
  • 본 논문에서는 모델기반의 제어기 설계 프로그램인 National Instruments(NI)사의 System Identification Toolkit과 Control Design Toolkit, Simulation module을 사용하여 기존의 제어기 설계방식 보다 쉽고 편리하게 제어기를 설계할 수 있었다. 직류전동기의 속도 제어시스템을 구현하기 위해서 하드웨어는 NI사에서 제공하는 실시간 제어기(Real-Time Controller:RT) CompactRIO를 사용하였다. 먼저는, 테스트 입력 신호를 전동기에 인가하고 얻은 출력신호를 통해 제어대상 플랜트인 직류전동기 구동시스템의 전달함수를 구할 수 있었다. 다음으로는 원하는 제어응답성능을 갖는 극점, 영점 제어기를 설계한 후, 모의실험을 통해 속도제어응답을 확인할 수 있었고, 실시간프로그램으로 다운로드하여 실제 전동기 구동시스템의 실험을 통해서 설계된 속도제어기의 응답 결과를 모의실험과 비교하여 검증하였다.

  • PDF

Controller Design of DC Motor Drive System Using dSPACE System (dSPACE 시스템을 이용한 직류 전동기 구동 시스템의 제어기 설계)

  • Ji, Jun-Keun;Lee, Yong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1796-1798
    • /
    • 2005
  • 본 논문에서는 직류전동기의 속도 및 전류제어를 위하여 dSPACE 시스템을 이용하여 전류 궤환을 갖는 속도 제어시스템을 구현하였다. 속도 및 전류제어기의 설계는 MATLAB/SIMULINK 프로그램을 사용하여 간편하고 손쉽게 구현하였으며 직류전동기 속도제어의 안정성과 응답성을 향상시킬 수 있었다. 직류전동기의 전류제어 및 속도제어는 DSP 보드와 dSPCE 시스템을 사용하여 수행하였으며, 속도의 궤환은 속도센서인 엔코더 펄스를 이용해서 QEP로 처리하였고 전류의 궤환은 전류센서인 홀센서를 통해서 A/D 변환기로 처리하였다. 제어기들은 각각 PI 속도제어기 및 PI 전류제어기를 설계하였고 시뮬레이션과 실험을 통해서 속도 및 전류 응답을 확인하였다.

  • PDF

Disturbance Observer-based Current Measurement Offset Error Compensation in Vector-controlled SPMSM Drives (표면 부착형 동기 전동기 벡터 제어에서의 외란 관측기 기반 전류 측정 오프셋 오차 보상 방법)

  • Lee, Sang-Min;Lee, Kibok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.402-409
    • /
    • 2022
  • In vector-controlled drive systems, the current measurement offset error causes unwanted torque ripple, resulting in speed and torque control performance degradation. The current measurement offset error is caused by various factors, including thermal drift. This study proposes a simple DC offset error compensation method for a surface permanent magnet motor based on a disturbance observer. The disturbance observer is designed in the stationary reference frame. The proposed method uses only the measured current and machine parameters without additional hardware. The effect of parameter variations is analyzed, and the performance of the current measurement offset error compensation method is validated using simulation and experimental results.

Simple On-line Elimination Strategy of Dead Time and Nonlinearity in Inverter-fed IPMSM Drive Using Current Slope Information (IPMSM 드라이브에서 전류 기울기 정보를 이용한 데드타임 및 인버터 비선형성 효과의 간단한 제거 기법)

  • Park, Dong-Min;Kim, Myung-Bok;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.401-408
    • /
    • 2012
  • A simple on-line elimination strategy of the dead time and inverter nonlinearity using the current slope information is presented for a PWM inverter-fed IPMSM (Interior Permanent Magnet Synchronous Motor) drive. In a PWM inverter-fed IPMSM drive, a dead time is inserted to prevent a breakdown of switching device. This distorts the inverter output voltage, resulting in a current distortion and torque ripple. In addition to the dead time, inverter nonlinearity exists in switching devices of the PWM inverter, which is generally dependent on operating conditions such as the temperature, DC link voltage, and current. The proposed scheme is based on the fact that the d-axis current ripple is mainly caused by the dead time and inverter nonlinearity. To eliminate such an influence, the current slope information is determined. The obtained current slope information is processed by the PI controller to estimate the disturbance caused by the dead time and inverter nonlinearity. The overall system is implemented using DSP TMS320F28335 and the validity of the proposed algorithm is verified through the simulation and experiments. Without requiring any additional hardware, the proposed scheme can effectively eliminate the dead time and inverter nonlinearity even in the presence of the parameter uncertainty.

The Design of Fuzzy P+ID Controller for Brushless DC Motor Speed Control (BLDC 전동기의 속도 제어를 위한 퍼지 P+ID 제어기 설계)

  • Kim, Young-Sik;Kim, Sung-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.823-829
    • /
    • 2006
  • In this paper presents approaches to the design of a hybrid fuzzy logic proportional plus conventional integral- derivative(fuzzy P+ID) controller in an incremental form. This controller is constructed by using an incremental fuzzy logic controller in place of the proportional term in a conventional PID controller. The PID type controller has been widely used in industrial application due to its simply control structure, easy of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the Fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the Fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid Fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

A Study on the Dynamic Characteristics Improvement of Direct Drive Electro-mechanical Actuation System using Dynamic Force Feedback Control (동적 하중 되먹임 제어를 사용한 직구동 방식 전기기계식 구동장치시스템의 동특성 개선에 관한 연구)

  • Lee, Hee-Joong;Kang, E-Sok;Song, Ohseop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.328-341
    • /
    • 2017
  • In the control actuator system of a launch vehicle based on thrust vectoring, the interaction between electro-mechanical position servo and inertial load are combined with the dynamic characteristics of the flexible vehicle support to generate synthetic resonance. This occurred resonance is fed back to the attitude control system and can influence stability of launch vehicle. In this study, we proposed a simulation model to analyze synthetic resonance of electro-mechanical actuation system for thrust vector control and explained the results of simulation and test using dynamic force feedback control which improves dynamic characteristics of servo actuation system by reducing synthetic resonance.

Compensation of Periodic Magnetic Saturation Effects for the High-Speed Sensorless Control of PMSM Driven by Inverter Output Power Control-based PFC Strategy

  • Lee, Kwang-Woon
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1264-1273
    • /
    • 2015
  • An inverter output power control based power factor correction (PFC) strategy is being extensively used for permanent magnet synchronous motor (PMSM) drives in appliances because such a strategy can considerably reduce the cost and size of the inverter. In this strategy, PFC circuits are removed and large electrolytic DC-link capacitors are replaced with small film capacitors. In this application, the PMSM d-q axes currents are controlled to produce ripples, the frequency of which is twice that of the AC main voltage, to obtain a high power factor at the AC mains. This process indicates that the PMSM operates under periodic magnetic saturation conditions. This paper proposes a back electromotive-force (back-EMF) estimator for the high-speed sensorless control of PMSM operating under periodic magnetic saturation conditions. The transfer function of the back-EMF estimator is analyzed to examine the effect of the periodic magnetic saturation on the accuracy of the estimated rotor position. A simple compensation method for the estimated position errors caused by the periodic magnetic saturation is also proposed in this paper. The effectiveness of the proposed method is experimentally verified with the use of a PMSM drive for a vacuum cleaner centrifugal fan, wherein the maximum operating speed reaches 30,000 rpm.

Sensorless vector control for super-high speed PMSM drive

  • Bae Bon-Ho;Sul Seung-Ki;Kwon Jeong-Hyeck;Shin Jong-Sub
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.773-778
    • /
    • 2001
  • This paper describes the implementation of the vector control schemes for a variable-speed 131kW PMSM (Permanent Magnet Synchronous Motor) in super-high speed application. The vector control with synchronous reference frame current regulator has been implemented with the challenging requirements such as the extremely low stator inductance$(28^{\mu}H)$, the high dc link voltage(600V) and the high excitation frequency(1.2kHz). Because the conventional position sensor is not reliable in super-high speed, a vector control scheme without any position sensor has been proposed. The proposed sensorless algorithm is implemented by processing the output voltage of the PI current regulator, and hence the structure is simple and the estimated speed is robust to the measurement noise. The experimental system has been built and the proposed control has been implemented and evaluated. The test result, up to the speed of 60,000 r/min, shows the validity of the proposed control.

  • PDF

Development of a Simple Autonomous Vehicle for Greenhouse Works (온실용 간이 자율주행 작업차의 개발)

  • 이재환;류관희
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.422-428
    • /
    • 1996
  • This study was conducted to developed to develop a simple battery-powered autonomous vehicle for greenhouse works. A steering method using speed difference of two independent driving motors was adopted. DC motor driving circuit, speed control circuit and controller using one-chip microcomputer were constructed. The inputs of controller are rolling of the vehicle and current speed of driving motors. Using these signals, automatic guidance system along furrow was developed. A computer simulation program by the kenematic analysis was developed to find out optimal control algorithm. The results of this study are as follows. 1. Automatic guidance system along the furrow that adopted two independent driving motors and rolling of vehicle was developed. 2. The results of simulation showed that PID control was adequate to automatic guidance system along furrow. 3. Two commercial 12V battery serially connected were able to drive the vehicle on the soil ground for five hours in continuous operation and for four hours in intermittent operation without recharging the battery. 4. The speed range was 0-0.7m/s and the rolling of vehicle could be controlled within $pm5^{\circ}$ range. 5. From a series of tests, developed vehicle was found to be a useful tool for greenhouse works.

  • PDF

Development of Digital Carriage for Continuous/Intermittent Welding (디지털식 연속/단속 용접용 캐리지 개발)

  • 감병오;김동규;김광주;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2002
  • This paper shows the results of the development of a small size of digital type continuous and intermittent welding auto-carriage based on microprocessor (Intel 80196KC) for welding process with long welding line. The developed welding auto-carriage loads welding torch and tracks welding line. It is an automaton largely used for welding process with a lot of long welding lines such as shipbuilding and structure. Most traditional auto-carriages have been developed based on analog circuit for open loop control. So this analog circuit welding auto-carriage cannon control welding speed. Specially welding auto-carriage for intermittent welding condition is so complicated and has the low precision of control performance in welding distance and non-welding distance. The auto-carriage developed in this paper has the following characteristics: It has not only functions of traditional carriage but also functions such as pseudo-welding process of big iron structures, intermittent welding in order to limit heat for welding thin plates, crater treatment of the final step of welding, acceleration at the initial step of welding and deceleration in the final step of welding. The main control board of auto-carriage, power supply system and DC motor drive wee developed and manufactured. The welding speed and the welding distance of the developed auto-carriage are controlled accurately by feedback control using photo-sensor. Hardware and software robust against the heat and noise produced on the welding process are developed.