• Title/Summary/Keyword: DC Motor Drive

Search Result 469, Processing Time 0.021 seconds

Low-Cost Fault Diagnosis Algorithm for Switch Open-Damage in BLDC Motor Drives

  • Park, Byoung-Gun;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • In this paper, a fault diagnosis algorithm for brushless DC (BLDC) motor drives is proposed to maintain control performance under switch open-damage. The proposed fault diagnosis algorithm consists of a simple algorithm using measured phase current information and it detects open-circuit faults based on the operating characteristic of BLDC motors. The proposed algorithm quickly recovers control performance due to its short detection time and its reconfiguration of the system topology. It can be embedded into existing BLDC drive software as a subroutine without additional sensors. The feasibility of the proposed fault diagnosis algorithm is proven by simulation and experimental results.

Sensorless Drive for Brushless DC Motor Using Simple Voltage Detecting Circuit (간단한 전압 검출 회로를 이용한 BLDC 전동기의 센서리스제어)

  • Go, Sung-Chul;Ahn, Joon-Seon;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1294-1296
    • /
    • 2005
  • Because of its cost effectiveness, the Brushless DC Motor(BLDCM) is focused by the industry these days. Considering the constant back-EMF region of the BLDCM, only a simple position information should be provided for constant torque control. From this point of view, using expensive position sensors, such as encoder, resolver, etc, decreases the cost effectiveness of the BLDCM. The Proposed detecting circuit detects position of zero crossing point(ZCP) then relative position could be calculated from ZCP. This circuit is robust to noise because of working in the current level. BLDCM is driven from the position information by the ZCP The reliability on BLDCM sensorless control using the voltage detecting circuit is shown through simulation using Matlab.

  • PDF

Design of a Model Reference Adaptive Control System with Dead Zone

  • Yokota, Yukihiro;Uchiyama, Kenji;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1239-1244
    • /
    • 2004
  • Precise positioning is an important problem facing motion control systems which usually use electric motor. A motor possesses a nonlinear property which degrades the positioning accuracy. Therefore, a compensator which linearizes the relationship between the angular velocity and input signal of the motor is required to enable precise positioning. In this paper, the design of a Model Reference Adaptive Control System (MRACS) for realizing the precise positioning for a system using a motor including the nonlinear property is described. The designed MRACS is applied to the attitude control problem on a satellite using a DC servomotor to drive its reaction wheel. Experimental results demonstrate the validity of a proposed control method for a positioning control system with an electric motor.

  • PDF

Improvement of Linearized Characteristics for Induction Motor in the Transient State (과도상태에서 유도전동기의 선형화특성 개선에 관한 연구)

  • 윤병도;김민회;정재윤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.164-174
    • /
    • 1990
  • The improvement of linearized characteistics of induction motor control system with field oriented method is presented in this paper. A fully digitally controlled induction motor driver system based on the proposed linear control condition is described. The control system consists of IBM-PC/AT microcomputer, VSI PWM Inverter, and PI controller with softwave. By controlling the torque component, the rated flux component can be kept constant, even in the transient state. It is clearly confirmed by experiment that the improvement of the vector control condition is satisfactory. A simplified control model of an induction motor similar to the model for a separately excited DC motor drive system is obtained.

  • PDF

Development of 110 kW AC Motor Vector Drive for 450 Ton Gantry Crane (450톤 크레인용 110 kW 유도전동기 벡터 드라이버 개발에 관한 연구)

  • Kim, Young-Seok;Kim, Seong-Yoon;Lee, Hae-Keu;Ahn, Byung-Ku;Kim, Sung-Jun;Seok, Jul-Ki;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.268-270
    • /
    • 1995
  • In crane drives, DC motor has been most widely used due to simple control characteristic and favorable transient behavior. Nowadays, however, the squirrel cage induction motor is known as an attractive candidate due to elimination of all sliding electrical contacts, resulting in an exceedingly simple and rugged construction. Especially, in hoist application, the smooth torque control and four quadrant operation are essential. In this paper, an operation of dual inverters with common DC bus fed by vector controlled induction motor is described. Single DSP is employed as a main processor to control dual inverters and communicates each input/output signal with PLC. As well as giving a detailed expression, full simulation and experimental results are presented.

  • PDF

Control System of Throttle Actrator for TCS (TCS용 스로틀 액츄에이터 제어 시스템)

  • 송재복;김효준;민덕인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Accurate positioning of a throttle valve is required to implement the traction control system(TCS) which improves acceleration performance in slippery roads. In this research, position control system is developed for the main throttle actuator(MTA) system which uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Digital PID control law is used as basic control algorithm. In order to prevent overshoot and improve accuracy, velocity profiles are generated and implemented whenever the targer throttle angle is given from the TCS controller. Thanks to velocity profiles, the control performance was very good and only one set of PID gains was used to cover the entire operating range. Also, the resolution of position is about 0.4$^{\circ}C$, which is better than that of stepping motor also used as throttle actuator in some products. The response time of the developed system is also fast enough to implement the engine control based TCS algorithm.

  • PDF

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

Outdoor Smart Follow Cart using Bluetooth Function of Smartphone (스마트폰의 Bluetooth 기능을 활용한 실외용 스마트 팔로우 카트)

  • Kim, Ji-Hoon;Kim, Young-Bin;Choi, Seong-Rak;Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.959-968
    • /
    • 2022
  • In this paper, we intend to develop a cart with the convenience of moving objects or items that are difficult to hold by the hand of the disabled and the elderly from outdoor activities to a moving location. Using GPS module, DC motor, Bluetooth module, magnetometer sensor, and Blynk application, the smart follow cart was programmed to accurately know the owner's location while following the cart. The values of latitude and longitude of the magnetometer sensor are set so that the correct leverage value can be obtained in the lead for fine adjustment of the start and stop angles so that the user's position can be freely detected. The above motor driver L298n was connected to the motor to drive the DC motor at a fine angle. A smart follow cart was implemented that receives location signals according to the direction of the owner by turning on/off the mobile phone app as a switching role by connecting the GPS through Bluetooth wireless communication using a smartphone.

Power System and Drive-Train for Omni-Directional Autonomous Mobile Robots with Multiple Energy Storage Units

  • Ghaderi, Ahmad;Nassiraei, Amir A.F;Sanada, Atsushi;Ishii, Kazuo;Godler, Ivan
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.291-300
    • /
    • 2008
  • In this paper power system and drive-train for omni-directional autonomous mobile robots with multiple energy storage units are presented. Because in proposed system, which is implemented in soccer robots, the ability of power flow control from of multiple separated energy storage units and speed control for each motor are combined, these robots can be derived by more than one power source. This capability, allow robot to diversify its energy source by employing hybrid power sources. In this research Lithium ion polymer batteries have been used for main and auxiliary energy storage units because of their high power and energy densities. And to protect them against deep discharge, over current and short circuit, a protection circuit was designed. The other parts of our robot power system are DC-DC converters and kicker circuit. The simulation and experimental results show proposed scheme and extracted equations are valid and energy management and speed control can be achieved properly using this method. The filed experiments show robot mobility functions to perform the requested motion is enough and it has a high maneuverability in the field.