• Title/Summary/Keyword: DC Motor Drive

Search Result 469, Processing Time 0.037 seconds

A Study on the Characteristic of a High Speed DC Motor (고속직류전동기의 특성 연구)

  • Kim, Hyun-Chel;Kong, Yeong-Kyung;Hwang, Young-Moon;Song, Jong-Hyun;Hwang, Jae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.56-58
    • /
    • 1993
  • This report describes the high speed DC motor (8,000 rpm) that we have designed, manufactured and tested. DC motor is the best drive system in electric-mechanical energy conversion. The design concept for high speed and high energy density to DC motor is to maximize Ampere-conductor in armature and to maximize flux density in armature teeth, armature core, pole, yoke using flux path.

  • PDF

Electromagnetic Force Analysis of BLDC Motor for Hard Disk Drive (하드디스크 구동용 BLDC 전동기의 전자력 해석에 관한 연구)

  • Park, Seung-Chan;Yun, Tae-Ho;Gwon, Byeong-Il;Yun, Hui-Su;Won, Seong-Hong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.9
    • /
    • pp.476-483
    • /
    • 1999
  • In this paper, electromagnetic forces acting on the rotor surface of a BLDC motor for hard disk drive are calculated by the finite element field analysis. The frequency characteristics of torque ripple, local force and unbalanced magnetic force as a source of mechanical vibration area analyzed. Ring-type permanent magnets for the brushless DC motor are apt to have different magnetization levels at each pole because of the unbalanced air gap between the magnet surface and the magnetizer fixture during the multi-poles magnetizing process. This paper discusses the effect of the unsymmetric magnetization distribution in the permanent magnet on the brushless DC motor performances. As a result, the unbalanced magnetic force acting on the rotor surface and the torque ripple are examined for the motor with an unsymmetric magnetization distribution, and compared with those of an ideally symmetric motor.

  • PDF

Maximum Efficiency Control of a Stator Flux-Oriented Induction Motor Drive (유도전동기 고정자자속 기준제어의 최대효율제어)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.117-122
    • /
    • 2006
  • Maximum efficiency control scheme in a stator flux-oriented induction motor drive is proposed for minimizing input dc power. Flux level is decreased in steps for searching the minimum input dc power. In addition, Torque equation, slip angular frequency, and decoupling compensation current considering iron loss resistance is used. Simulation and experimental results verify the effectiveness of the proposed method.

The study of servo control in ultrasonic motor

  • ;C.B. Besant
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.158-165
    • /
    • 1991
  • DC servo motors have small torques compared to their weight. In order to reduce the speed and increase the output torque of the DC motor, a gear box is commonly used. The use of a gearbox, however, imposes limitations onmany applications because of the backlash and the reduction in transmission efficiency. Furthemore, the elastic deformation or the compliance of the gearbox decreases the accuracy of the servo mechanism and the stability of the system. In view of the many disadvantages in using the gearbox, a more effective solution has to be found. The solution is the direct drive mechanism. There are many kinds of direct drive motors. I will consider the ultrasonic motor in particular.

3-Phase Current Estimation of SRM Based on DC-Link Current (직류링크전류를 기반으로 한 SRM 3상전류 추정법)

  • Kim, Ju-Jin;Choi, Jae-Ho;Kim, Tae-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.307-312
    • /
    • 2006
  • This paper proposes the SRM drive system, which accurately estimates the phase currents from the DC-link current to drive SRM instead of detecting the three-phase currents. In addition, the detecting circuit of DC-link current is also proposed to increase the resolution and decrease the off-set influence. Comparing with the general drive system based on the phase current, it is verified through the experiments that the proposed SRM drive system based on the DC-link current has the good performance in steady-state response of the speed control. Using the DC-link current, all of the 3-phase currents can be easily estimated for driving the SRM.

Carrier Based Common Mode Voltage Reduction Techniques in Neutral Point Clamped Inverter Based AC-DC-AC Drive System

  • Ojha, Amit;Chaturvedi, Pradyumn;Mittal, Arvind;Jain, Shailendra
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.142-152
    • /
    • 2016
  • Common mode voltage (CMV) generation is a major problem in switching power converter fed induction motor drive systems. CMV is the zero sequence voltage generated due to the switching action of power converters. Even a small magnitude of CMV with a high rate of change may circulate large bearing currents which may damage a machine's bearings and shorten its life. There are several methods of controlling CMV. This paper presents 3-level sinusoidal pulse width modulation based techniques to control the magnitude and rate of change of CMV in multilevel AC-DC-AC drive systems. Simulation and experimental investigations have been presented to validate the performance of proposed technique to control CMV in 3-level neutral point clamped inverter based AC-DC-AC system.

DC Bias Control of High Frequency Transformer in High Power FB DC/DC Converter (대용량 FB DC/DC 컨버터에 있어서 고주파변압기 편 여자 현상 및 제어)

  • 김태진
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.45-48
    • /
    • 2000
  • By the use of he DSP and microprocessor controller many high power converter such as especially inverter and motor drive system may be enhanced resulting in the improved robustness of EMI the ability to communicate the operating conditions and the ease of adjusting the control parameters. However the digital controller using DSP or microprocessor has not been applied in the high frequency switching power supplies especially in full bridge dc/dc converters. this paper presents a promising solution to the dc bias control problem of high frequency transformer in high power full bridge converter.

  • PDF

Development of a Novel Direct-Drive Tubular Linear Brushless Permanent-Magnet Motor

  • Kim, Won-jong;Bryan C. Murphy
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 2004
  • This paper presents a novel design for a tubular linear brushless permanent-magnet motor. In this design, the magnets in the moving part are oriented in an NS-NS―SN-SN fashion which leads to higher magnetic force near the like-pole region. An analytical methodology to calculate the motor force and to size the actuator was developed. The linear motor is operated in conjunction with a position sensor, three power amplifiers, and a controller to form a complete solution for controlled precision actuation. Real-time digital controllers enhanced the dynamic performance of the motor, and gain scheduling reduced the effects of a nonlinear dead band. In its current state, the motor has a rise time of 30 ms, a settling time of 60 ms, and 25% overshoot to a 5-mm step command. The motor has a maximum speed of 1.5 m/s and acceleration up to 10 g. It has a 10-cm travel range and 26-N maximum pull-out force. The compact size of the motor suggests it could be used in robotic applications requiring moderate force and precision, such as robotic-gripper positioning or actuation. The moving part of the motor can extend significantly beyond its fixed support base. This reaching ability makes it useful in applications requiring a small, direct-drive actuator, which is required to extend into a spatially constrained environment.

Acoustic Noise Reduction and Power Factor Correction in Switched Reluctance Motor Drives

  • Rashidi, Amir;Saghaiannejad, Sayed Mortaza;Mousavi, Sayed Javad
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, a four-phase 8/6-pole 4-kW SR motor drive model is presented. Based on experimental data, the model allows an accurate simulation of a drive in dynamic operation. Simulations are performed and a laboratory type set-up is built based on a TI TMS320F2812 platform to experimentally verify the theoretical results obtained for a SR motor. To reduce acoustic noise and to correct the power factor of this drive, a two-stage power converter is proposed that uses a current source rectifier (CSR) as the input stage for the asymmetrical converter of the studied SRM. Employing the space-vector modulation (SVM) method in matrix converters, the CSR switching allows the dc link's capacitors to be eliminated and the power factor of the SRM drive to be improved. As the electrical motive force (emf) is directly proportional to the rotor speed, the input voltage to the machine can be programmed to be a function of the speed with the modulation index of the CSR, leading to a reduction in the acoustic noise of the SRM drive. Simulation of the whole SRM drive system is performed using MATLAB-Simulink. The results fully comply with the required conditions such as power factor correction with an improvement in the THD.

A Study on the PID Order tuning by GAs for Velocity Control of DC Servo Motor (DC 서보모터의 속도제어를 위한 GAs의 PID 계수조정에 관한 연구)

  • Park Jae-Hyung;Kim Seong-Kon;Lee Sang-kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1840-1846
    • /
    • 2005
  • In this paper, does by purpose DC servo motor speed controller design about PID coefficient tuning techniques that use genetic algerian. DC servo motor is used in application field of a peat many control machine or robot etc. and in this field, selection of controller parameters requires user's expert knowledge. Therefore, general amount of work engineers must continuously iteration tuning in controller parameters by trial and error. With this, when must tuning parameter coefficient about change of dynamic system or disturbance, can improve the efficiency according to following that is more precised and parameter coefficient value that is optimized by using genetic algorithm. In this paper, from dynamic character modeling get in analyze dynamic character of DC motor desist controller drive control possible that is fast response character md improved speed precision using a Genetic Algorithms.