• 제목/요약/키워드: DC Generator

검색결과 398건 처리시간 0.039초

Low-Voltage and High-Current DC Output Realized by Multiple Power Cells Based on Deadbeat and Automatic Current Sharing Control

  • Liu, Jinfeng;Zhang, Yu;Wang, Xudong;IU, Herbert Ho-Ching
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1575-1585
    • /
    • 2017
  • This paper presents a synchronous generator with a distributed system of multiple parallel three-phase power cells. This generator can immediately output high DC. Each power cell comprises three-phase windings and a three-phase synchronous rectification bridge with a deadbeat control of load power feedforward, which can improve the characteristics of dynamic response and reflect the load variance in real time. Furthermore, each power cell works well independently and modularly using the method of automatic maximum current sharing. The simulation and experimental results for the distributed controller of multiple power cells demonstrate that the deadbeat control method can respond quickly and optimize the quality of the energy. Meanwhile, automatic maximum current sharing can realize the validity of current sharing among power cells.

휴대형 고전압 발생기에 대한 전자기기의 내성 (Immunity of Electronic Equipments Against Potable High Voltage Generator)

  • 이종익;여준호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.61-62
    • /
    • 2017
  • 본 연구에서는 최근 상용화된 휴대 가능한 소형 고전압 발생기의 주요 기능과 제원에 대해 소개한다. USB 킬러는 USB 포트를 사용하는 전자기기의 과전압 입력에 대한 보호회로를 시험하기 위한 용도로 개발되었다. USB 포트에서 공급되는 5 V 직류 전압을 발진기, 변압기, 배전압 정류회로를 통해 200 V이상의 충분히 높은 직류 전압으로 변환시킨다. 고용량 커패시터에 충전된 전압을 USB 포트를 통해 역방향으로 전자기기에 충격을 가하여 전자기기를 파괴하거나 보호회로를 시험 할 수 있다. USB 킬러는 개인이 쉽게 구입하여 전자기기를 시험해 볼 수 있다. 인터넷을 통해 공개된 시험 결과들과 실제 시험을 통해 확인된 결과들을 소개한다.

  • PDF

소출력 연료전지 발전용 booster연구 (A study on the booster for a small-capacity fuel cell power generator)

  • 한수빈;정봉만;신동열;최수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.504-507
    • /
    • 1991
  • Modelling and simulation of booster which is used as step-up DC/DC converter for small scale fuel cell generator is studied. And 2kW booster based on this result is designed. Especially, booster efficiency related with fuel cell and control characteristics are analyzed and a 2kW booster is experimented in various operating condition. As a result, power conversion efficiency is above 74% throughout the whole operating range.

  • PDF

Crowbar 운전을 가지는 이중여자유도발전기 풍력발전시스템의 제어전략 (Control Strategies of Doubly Fed Induction Generator -Based Wind Turbines with Crowbar Activation)

  • 저스토 잭슨 존;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.706-707
    • /
    • 2011
  • The insertion of the crowbar system in the doubly fed induction generator rotor circuit for a short period of time during grid disturbance enables a more efficient way of limiting transient rotor current and hence protecting the rotor side converter (RSC) and the DC - link capacitor. When crowbar is activated at fault occurrence and clearance time, RSC is blocked while DC -link capacitor and the grid side converter (GSC) can be controlled to provide reactive power support at the PCC and improve the voltage which helps to comply with grid codes. In this paper, control strategies for crowbar system to limit the rotor current during fault is presented with RSC and GSC controllers are modified to control PCC voltage during disturbance to enhance DFIG wind farm to comply with some strict grid codes. Model simulated on MATLAB/Simulink verify the study through simulation results presented.

  • PDF

농형유도 풍력발전기의 성능개선을 위한 에너지 저장장치의 동작특성 분석 (Operational Analysis of Energy Storage System to Improve Performance of Wind Power System with Induction Generator)

  • 심명보;한병문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1045_1046
    • /
    • 2009
  • This paper presents an active and reactive power compensator for the wind power system with squirrel-cage induction generator. The developed system is able to continuously compensate the active and reactive power. The 3-phase inverter operates for the compensation of reactive power, while the DC/DC converter with super-capacitors operates for the compensation of active power. The proposed compensator can be expected that developed system may be used to compensated the abrupt power variation due to sudden change of wind speed or sudden power-drop by tower effect. It can be also applied for the distributed generation and the Micro-Grid.

  • PDF

풍력 터빈 모의 실험을 위한 가변 토오크 입력형 시뮬레이터 (A Wind Turbine Simulator with Variable Torque Input)

  • 정병창;송승호;노도환;김동용
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권8호
    • /
    • pp.467-474
    • /
    • 2002
  • In this paper, a wind power simulator is designed and implemented. To realize the torque of wind blade, a DC motor is used as a variable torque input device. An induction machine is used as a generator of which speed is controlled to maintain the optimal tip speed ratio during wind speed change. Input torque of system is controlled by armature current of DC motor and speed is controlled by generator control unit using field oriented control algorithm. Various control algorithms such as MPPT, soft start up, the simulator reactive power control, can be developed and tested using the simulator.

PSCAD/EMTDC를 이용한 계통연계형 풍력발전시스템 모델링 (Modeling of Grid-connected Wind Energy Conversion System Using PSCAD/EMTDC)

  • 김슬기;김응상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.320-322
    • /
    • 2002
  • The paper presents an electrical model of a grid-connected wind energy conversion system (WECS) with a variable speed drive, a fixed pitch angle, a synchronous generator as a wind generator and AC-DC-AC conversion scheme for simulating dynamic behaviors and performance responding to varying wind speed input. The electric output of the WECS is controlled by the AC-DC-AC conversion scheme, the objective of which is to capture the maximum active power under varying wind conditions and to keep the voltage of WECS terminal bus at a specific level. Aerodynamic models are used to incorporate the power characteristics to wind speed. The modeling and simulation of the WECS are realized on PSCAD/EMTDC environment.

  • PDF

독립형 소형 풍력발전 시스템에 관한 연구 (A Study of Stand Alone Small Wind Turbine Systems)

  • 김형길;공정식;서영택;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1005-1007
    • /
    • 2005
  • Small wind turbines are becoming a viable technology option to supply electricity to landowners. These systems provide energy security, product relatively no environmental harm, and in an appropriate setting can be quite cost-competitive with traditional electricity options. This paper is dealing with the methods how to overcome such inconvenience and with the analysis of characteristic and a field test with a prototype of the stand alone wind turbine was performed. The method applies to small systems, equipped with a coreless axial-flux permanent magnet(AFPM) generator in the turbine, a dc-dc converter and batteries. The analysis concentrates on the effect of the load on the power-wind speed curve of the turbine. The system is designed for direct driven, coupled with turbine and generator with a rated power of, 3kW.

  • PDF

계통연계형 가변속 풍력발전방식의 PSCAD/EMTDC 모의 및 해석 (PSCAD/EMTDC BASED MODELING AND ANALYSIS OF A GRID-CONNECTED VARIABLE SPEED WIND ENERGY CONVERSION SCHEME)

  • 김슬기;김응상
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권8호
    • /
    • pp.413-419
    • /
    • 2003
  • The paper presents a simulation model and analysis of a grid-connected variable speed wind energy conversion scheme (VSWECS) using the PSCAD/EMTDC software. The modeled system uses a variable speed drive, a fixed pitch angle, a synchronous generator as a wind generator and an AC-DC-AC conversion scheme, which facilitates the wind generation to efficiently operate under varying wind speed while connected to the distribution network. The power output of the WECS is controlled by the AC-DC-AC conversion scheme, the objective of which is to capture the maximum active power under varying wind conditions and to keep the voltage magnitude of the terminal bus at a specific level. Aerodynamic models are applied for a wind turbine model. An simulation analysis of the scheme in terms of its responding to wind variations is also presented.

Cost-Effective Converters for Micro Wind Turbine Systems using PMSG

  • Park, Hong-Geuk;Lee, Dong-Choon;Kim, Heung-Geun
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.156-162
    • /
    • 2008
  • This paper proposes a low-cost power converter for micro wind turbine systems using permanent magnet synchronous generators (PMSG). The proposed converter consists of a two-leg three-phase PWM inverter for the generator control and a single-phase half-bridge PWM converter which is connected to the utility grid. For the two separate DC-link voltages, a balancing control is added and the adverse effect of the DC-link voltage ripples on the inverter output voltage is compensated. The control performance of the proposed converter topology for the micro wind turbine system is shown by the simulation results using PSIM software.