• 제목/요약/키워드: DC Distribution

검색결과 597건 처리시간 0.026초

DC Appliance Safety Standards Guideline through Comparative Analysis of AC and DC Supplied Home Appliances

  • Ahn, Jung-Hoon;Kim, Dong-Hee;Lee, Byoung-Kuk;Jin, Hyun-Cheol;Shim, Jae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.51-57
    • /
    • 2012
  • This paper provides a safety guideline for DC supplied home appliances through the comparative analysis of existing safety guideline for AC supplied home appliances. For this purpose, a predictive DC home appliance model is suggested and in special international safety standards of AC appliances are also analyzed. Moreover, a DC distribution system is built to verify the validity of the proposed safety guideline. The detailed analyzing process is explained with help of informative experimental results.

Highly Power-Efficient Rack-Level DC Power Architecture Combined with Node-Level DC UPS

  • Kwon, Won-Ok;Seo, Hae-Moon;Choi, Pyung
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.648-651
    • /
    • 2011
  • This letter presents a highly efficient rack-level DC power architecture combined with a node-level DC uninterruptible power supply (UPS). The proposed system can provide almost the equivalent power efficiency of a high-voltage DC data center without any change in the existing power infrastructure. The node-level DC UPS combined with a power distribution board provides high power efficiency as well as lower UPS installation costs. Implemented on a rack, the entire power system can be monitored through a network.

에너지 효율 향상을 위한 직류/교류 하이브리드 급전시스템의 해석 (DC/AC Hybrid Distribution System Analysis for Improving Energy Efficiency)

  • 이영진;한동화;최중묵;반충환;김동진;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.244-245
    • /
    • 2010
  • Hybrid distribution system is able to use existing AC load under AC power and DC power by providing existing AC power and proper DC voltage at the same time. and, the future expected DC appliance is also available. Hybrid distribution system is divided into two different type. the one is DC common method and the other is AC common method. This paper design each system, and study operating characteristics for improving energy efficiency.

  • PDF

DC 차단기의 하이브리드 아크 소호 기법에 관한 연구 (A Study on the Hybrid Arc Extinguishing Mechanism of the DC Circuit Breaker)

  • 주남규;김남호
    • 한국항행학회논문지
    • /
    • 제19권3호
    • /
    • pp.250-256
    • /
    • 2015
  • 손쉬운 제어성, 운용성 등 다양한 이유로 디지털 부하가 급증하고 있고 이와 함께 부하의 소비 패턴은 직류화 되고 있다. 그러나 공급되는 전력은 교류 전원이므로 실질적으로 필요로 하는 부하의 공급 전원인 직류 전원을 만족하기 위하여 교류 전원을 다시 직류로 변환하여 사용하고 있다. 태양광, 풍력, 연료전지 등 신재생 에너지원의 경우 직류 발전을 하는 발전원으로 교류로 변환을 통해 계통에 유입되고 다시 직류로 변환되어 부하에 공급하게 되는 다단 변환을 하게 되어 손실은 지속적으로 증가하게 된다. 에너지원의 효율적인 사용을 위한 직류 기반의 배전 시스템이 필요로 하나, 부하뿐만 아니라 보호 기능을 구현하기 위한 직류 배선용 차단기의 개발이 필요하다. 이에 본 연구에서는 영구 자석을 이용한 아크 소호 기술과 하이브리드 아크 소호 기술을 이용한 직류 아크 소호 기술에 대한 연구를 통하여 안정적인 직류 배전 시스템 운용을 위한 계통 및 기기 보호가 가능할 것으로 기대된다.

다중 병렬 부하를 가지는 DC 배전 시스템에서의 전력 품질 향상을 위한 Voltage Bus Conditioner의 PI 제어 (The PI control of the Voltage Bus Conditioner for the improvement of the Power Quality in the DC Power Distribution System with multiple parallel loads)

  • 이병헌;우현민;나재두;신재화;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1234-1235
    • /
    • 2011
  • A DC Power Distribution Systems(DC PDS) are widely used in telecommunication system, electric vehicle, aircraft, military system, etc. In the DC PDS, DC bus voltage instability may be occurred by the operation of multiple loads such as pulsed power load, motor drive system, and constant power loads. To damp the transients of the DC bus voltage, the Voltage Bus Conditioner(VBC) with the PI compensator is used. In this paper, the validity of the proposed VBC system is verified by PSIM simulation package.

  • PDF

Grid Parity를 고려한 DC 전원 공급율에 따른 신재생에너지 계통 연계의 경제성 평가 (The Economic Evaluation of Renewable Energy Penetration Based on Grid Parity According to the Ratio of DC Power Supply)

  • 김성열;이성훈;김진오
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.16-21
    • /
    • 2012
  • The growth in IT industry has brought a corresponding rise in the number of connected digital devices in the distribution network. These digital loads lead to AC to DC conversion losses in order to supply power to them. The more the renewable energies and plug-in electrical vehicles penetrated our lives, the more the electrical losses are caused by AC to DC conversion process. Hence, this paper suggests the methodology for evaluating the amount of power supplied according to the ratio of DC power supply and performs an economic analysis of DC distribution system considering grid parity. In here, the cost of carbon emission reduced by renewable energy is also concerned.

Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix

  • Nam, I.W.;Lee, H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.427-438
    • /
    • 2015
  • The present work proposes a new image analysis method for the evaluation of the multi-walled carbon nanotube (MWNT) distribution in a cement matrix. In this method, white cement was used instead of ordinary Portland cement with MWNT in an effort to differentiate MWNT from the cement matrix. In addition, MWNT-embedded cement composites were fabricated under different flows of fresh composite mixtures, incorporating a constant MWNT content (0.6 wt%) to verify correlation between the MWNT distribution and flow. The image analysis demonstrated that the MWNT distribution was significantly enhanced in the composites fabricated under a low flow condition, and DC conductivity results revealed the dramatic increase in the conductivity of the composites fabricated under the same condition, which supported the image analysis results. The composites were also prepared under the low flow condition (114 mm < flow < 126 mm), incorporating various MWNT contents. The image analysis of the composites revealed an increase in the planar occupation ratio of MWNT, and DC conductivity results exhibited dramatic increase in the conductivity (percolation phenomena) as the MWNT content increased. The image analysis and DC conductivity results indicated that fabrication of the composites under the low flow condition was an effective way to enhance the MWNT distribution.

Constant DC Capacitor Voltage Control based Strategy for Active Load Balancer in Three-phase Four-wire Distribution Systems

  • Win, Tint Soe;Tanaka, Toshihiko;Hiraki, Eiji;Okamoto, Masayuki;Lee, Seong Ryong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.176-183
    • /
    • 2014
  • Three-phase four-wire distribution systems are used for both three-phase three-wire loads and single-phase two-wire consumer appliances in South Korea, Myanmar and other countries. Unbalanced load conditions frequently occur in these distribution systems. These unbalanced load conditions cause unbalanced voltages for three-phase and single-phase loads, and increase the loss in the distribution transformer. In this paper, we propose constant DC capacitor voltage control based strategy for the active load balancer (ALB) in the three-phase four-wire distribution systems. Constant DC capacitor voltage control is always used in active power line conditioners. The proposed control strategy does not require any computation blocks of the active and reactive currents on the distribution systems. Balanced source-side currents with a unity power factor are obtained without any calculation block of the unbalanced active and reactive components on the load side. The basic principle of the constant DC capacitor voltage control based strategy for the ALB is discussed in detail and then confirmed by both digital computer simulations using PSIM software and prototype experimental model. Simulation and experimental results demonstrate that the proposed control strategy for the ALB can balance the source currents with a unity power factor in the three-phase four-wire distribution systems.

전력전자 변압기로 동작하는 저전압 직류배전 기능을 갖는 Quasi Z-소스 AC-AC 컨버터 (A Quasi Z-Source AC-AC Converter with a Low DC Voltage Distribution Capability Operating as a Power Electronic Transformer)

  • 류대현;엄준현;정영국;임영철
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.358-366
    • /
    • 2014
  • This paper proposes a quasi Z-source AC-AC converter with the low DC voltage distribution capability operating as a power electronic transformer. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel, also their output terminal are connected in series. Simple control method of duty ratio was proposed for the in phase buck-boost AC voltage mode and the DC output voltage control. DSP based experiment and PSIM simulation were performed. As a result, the PSIM simulation results were same with the measured results. By controlling the duty ratio under the condition of 100 [${\Omega}$] load, quasi Z-source AC-AC converter could buck and boost the AC output voltage in phase with the AC input voltage, and the same time, the constant DC voltage could be output without affecting the AC output characteristics. And, the DC output voltage 48[V] was constantly controlled in dynamic state in case while the load is suddenly changed ($50[\Omega]{\rightarrow}100[\Omega]$). From the above result, we could know that the quasi Z-source AC-AC converter can act as a power electronic transformer with a low DC voltage distribution capability.

소형 연료전지 연계형 DC GRID 부하 특성 (Load Characteristics of the DC GRID Connected to Small Fuel Cells)

  • 이상우;이상철;권오성;배준형;박태준;강진규;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.289-294
    • /
    • 2012
  • In recent years, understanding the dynamics of DC distribution system has become critically important due mainly to the increasing needs for the interconnection of DC distributed generators and the (DC-based) electric vehicle (EV) charging systems. In this paper, the characteristics of the DC grid system connected to the compact proton exchange membrane fuel cell (PEMFC) has been studied. In particular, the voltage and current transient phenomena were measured by varying the load of the DC grid system. Also, the voltage and current ripple were measured at the different load conditions. Our experimental results clearly manifested that the study contributes to the establishment of fundamental method to characterize the small DC grid system including distributed generation.