• Title/Summary/Keyword: DC Distribution

Search Result 596, Processing Time 0.03 seconds

A Study on the Development of a Work Operation Process Chart for Smart Distribution Board Fabrication (스마트 분전반 제작을 위한 작업 공정도 개발에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • This study presented the strength of the materials and parts for smart distribution board fabrication, and developed a work operation process chart for smart distribution board fabrication. This work operation process chart for smart distribution board fabrication complied with SPS-KEMC regulations, and the applicable range and object are less than 1,000 V and 1,000 Hz for the AC distribution board and less than 1,500 V for the DC distribution board. The power supply is 3 phase 4 wires ($3{\Phi}$ 4W), divided into a single phase circuit and a 3 phase circuit. In addition, the circuit was configured so that the leakage current flowing through the distribution line of the load could be monitored in real time by using the sensor module installed at the rear end of the circuit breaker. Therefore, the administrator can easily find the risk factor of the load since engineer can check the leakage current of each distribution line. In addition, if a leakage current greater than standard value flows, it is possible to generate an alarm against a short circuit and cut off the leakage current. The work operation process chart for the smart distribution board fabrication consists of the following steps: raw and subsidiary materials, sheet metal work, tube making, welding, painting, busbar fabrication, assembly and wiring, product inspection, shipment, etc. Moreover, symbols, ${\Delta}$, ${\nabla}$, ${\bigcirc}$, ${\Rightarrow}$, etc. were used according to the type of work and work progress so that workers can easily understand the progress of the work.

Influence of Endurance tests on Space Charge Distribution of 160kV HVDC XLPE Cable

  • Liu, Yun-Peng;Liu, He-Chen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.302-309
    • /
    • 2017
  • The ageing of XLPE cable insulation will lead to the accelerating accumulation of space charge, which will greatly affect the safe operation of the HVDC cable. In order to investigate the influence of different ageing modes on the space charge distribution of the HVDC cable, thermal stressed, electrical stressed and electro-thermal stressed endurance tests were carried out on the XLPE peelings. The tested XLPE peelings were obtained from 160kV HVDC cable insulation. The endurance tests were carried at thermal stress of 363K, electrical stress of 20kV/mm DC and a combination of both. The Pulsed Electro-Acoustic (PEA) method was used to measure the space charge distribution of the samples. The influences of ageing on the trap energy distribution were analyzed based on the isothermal relaxation theory and the decay characteristics of the space charge. The results showed that thermal ageing would help to improve the crystalline morphologies of the XLPE at the early stage. The total amount of space charge decreased compared to the ones before thermal ageing. The long term of electrical stress would result in the cleavage of polymer molecule chains which would intensify the accumulation of space charge and increase the density and depth of electron traps. With a combination of electrical and thermal stress, the injection and migration of space charge were more significant. Besides, the depth and density of electron traps increased rapidly with the increase of endurance time.

A Study on Voltage Sag Considering Real-Time Traffic Volume of Electric Vehicles in South Korea

  • Go, Hyo-Sang;Kim, Doo-Ung;Kim, Jun-Hyeok;Lee, Soon-Jeong;Kim, Seul-Ki;Kim, Eung-Sang;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1492-1501
    • /
    • 2015
  • This paper analyzes the effect of voltage sag on distribution systems due to the connection of Electric Vehicles (EVs). In order to study the impact of the voltage sag on the power system, two scenarios have been selected in this paper. The distribution system and EVs are modeled using the Electro Magnetic Transients Program (EMTP). The numbers of EVs are predicted based on the number of vehicles in distribution system of Seoul. In addition, the number of EVs is set up using real-time traffic in Seoul to simulate Scenario I and II. The simulation results show that voltage sag can occur if the distribution system has more than 30% of the total number of vehicles.

Series Line Compensation through Voltage Source Inverter (전압원 인버터에 의한 선로의 직렬보상)

  • 한병문;한경희;신익상;강중구
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.299-302
    • /
    • 1997
  • This paper describes a dynamic var compensator to compensate the line reactance for power transmission and distribution system. The compensator consists of a voltage source inverter with dc capacitor, coupling transformers, and control circuit. The operation of compensator was verified by computer simulations with EMPT and experimental works with a scaled hardware model. The advantage of the proposed system is rapid and continuous regulation of the reactive power.

  • PDF

Grid Fault Ride-Through Control of Modular Multilevel Converter for Medium Voltage DC Distribution (특고압 직류 배전망을 위한 모듈형 멀티레벨 컨버터의 계통 사고 ride-through 기술)

  • Jo, Seung-Rae;Kim, Seok-Min;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.27-29
    • /
    • 2018
  • 본 논문은 모듈형 멀티레벨 컨버터 기반 특고압 직류 배전망의 수전 계통 사고 대응 기법을 제안한다. 수전 계통의 순간적인 저전압 및 단락 사고 발생 시 전력변환장치는 계통 전압의 정상화를 지원하기 위해 연계를 유지해야 하며 계통 측의 요구에 따라 전압 변동률에 따른 무효 전력을 공급해야 한다. 제안하는 기법은 계통 사고 발생 시 계통 코드에 따라 무효 전류를 공급하여 수전 계통의 전압 레벨 복구를 지원한다. 시뮬레이션을 통해 제안하는 계통 사고 대응 기법의 타당성을 확인한다.

  • PDF

Reduction of Cogging Torque of BLDC Motors by Realizing Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현파 공극 자속밀도 구현에 의한 코깅토오크 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Kwon, Byung-Il;Lee, Chul-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.140-142
    • /
    • 2006
  • Cogging torque is often a principal source of vibration, noise and difficulty of control in permanent-magnet brushless DC motors. Cogging torque can be minimized by sinusoidal air-gap flux density waveform because it is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance. Therefore, this paper will present a design method of magnetization system of bonded isotropic neodynium-iron-boron(Nd-Fe-B) magnets in ring type with sinusoidal air-gap flux density distribution and low manufacturing cost. An analytical technique of magnetization makes use of two-dimensional finite element method(2D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation.

  • PDF

A Study on Comparison of Two phase SRMs (2상 SRM의 비교에 관한 연구)

  • Oh, Seok-Gyu;Lee, Chee-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.59-63
    • /
    • 2011
  • In small-power applications, variable-speed motors having high efficiency and controllability become more dominant than brushed DC motors. BLDC motors with permanent magnets in the rotor and SRMs directed by reluctance torque due to no permanent magnets have been strongly studied as a candidate. Compared to the BLDC motors, SRMs are more suitable for low-cost applications since the magnetic structure is simple, mechanically robust, and cheap due to no additional excitation in the rotor such as copper wire, aluminum, and permanent magnets. In addition, relatively small number of phases in single and two-phase SRMs allows more cost savings with regards to material in the motor and switching devices in the converter. In this paper, several 2 phase SRMs are compared to a 3 phase 6/4 SRM in terms of flux distribution in key parts of the motors.

Contigency Ranking Technique Using Line Capacity Calculation Method (선로용량 산정법을 이용한 상정사고 선택)

  • Park, Kyu-Hong;Jung, Jai-Kil;Hyun, Seung-Bum;Lee, In-Yong;Jung, In-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.285-288
    • /
    • 2000
  • This paper presents a technique for contingency ranting using line capacity calculation method and outage distribution factors(LODF) which are established by generation shift distribution factors from DC load flow solutions. By using the LODF, the line flow can be calculated a ccording to the modification of base load flow if the contingency occur. To obtain contingency ranting, maximum power tansferred to the load is obtained when load impedance $Z_r$ equal to line impedance $Z_s$. ( $Z_r$/ $Z_s$=1) The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF