• Title/Summary/Keyword: DC Distribution

Search Result 596, Processing Time 0.029 seconds

Rack-Level DC Power Solution for Volume Servers

  • Kwon, Won-Ok;Seo, Hae-Moon;Choi, Pyung
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.940-949
    • /
    • 2010
  • Rack-level DC power supply is the optimal technology for providing DC power to a volume server without any power infrastructure changes in an existing AC data center. In this paper, we propose a smartly controllable and monitorable DC rack power system. The proposed system improves power efficiency by changing the power distribution architecture of a conventional method in the rack. We developed an optimal power control method in multipower modules to provide high efficiency at low loads. In addition, the proposed system provides real-time web monitoring of the rack power and environment around a rack. In our experiments, the proposed system improved the power efficiency by over 10% compared to an AC power system providing N+1 redundant power and power monitoring.

An improved adaptive control technique for the Voltage Bus Conditioner with parallel loads in the DC Power Distribution System (병렬 부하를 갖는 DC배전 시스템을 위한 Voltage Bus Conditioner의 향상된 적응제어)

  • Lee, Byung-Hun;Chang, Han-sol;La, Jae-Du;Kim, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.249-250
    • /
    • 2011
  • In DC Power Distribution System(DC PDS), a bus voltage instability is occurred by multiple parallel loads. The Voltage Bus Conditioner(VBC) is used to mitigate the DC bus voltage transient. An adaptive controller of the VBC is designed and the simulation result of the controller is verified by PSIM simulation package for the proposed control technique.

  • PDF

A Study on the Digital DC Protection Relay through with Field Adoption Test in the DC Distribution System (직류급전시스템 시험적용 사례를 통한 디지털 직류 보호계전기에 관한 연구)

  • Cha, Kwang-Seok;Ko, In-Suk;An, Tae-Pung;Min, Byung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.606-615
    • /
    • 2006
  • This study identifies the comparison of Technical specification and Characteristics of DC Protection Relay(ETCPU200) used in DC Distribution System in Korea. ETCPU200 has completed Field Test and approved its capability by finding out causes of recent operations through lately developed digital DC protection relay in parallel operation at Maebong-Substation, Nakseongdae-Substation, Euljirosaga-Substation, Jegi-Substation and Chongryangri T/P area. It also examines additional features for efficient System Analysis and Operations.

  • PDF

A Controllable LCL-T Resonant AC/DC Converter for High Frequency Power Distribution Systems

  • Zeng, Jun;Li, Xuesheng;Liu, Junfeng
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.876-885
    • /
    • 2015
  • High frequency alternating current (HFAC) has been widely used in a wide range of power distribution systems (PDS) due to its superior performance. A high frequency AC/DC converter plays the role of converting HFAC voltage to DC voltage. In this paper, a new LCL-T resonant AC/DC converter has been proposed, and an easier control method based on input voltage comparison is presented, without the complicated calculation of the zero-crossing point. Both a low distortion and near-to-unity power factor can be achieved by the proposed resonant converter and control strategy. The operational principle and steady-state analysis are given for the proposed resonant converter. A simulation model and experimental prototype are implemented with an operation frequency of 25kHz and a rated power of 20W. The simulation and experimental results verify the accuracy of the analysis and the excellent performance of the proposed topology.

A Study on Fault Current Calculation of ±750[V] DC Distribution Grid (±750[V] 직류배전망의 고장전류 산정에 관한 연구)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1286-1291
    • /
    • 2018
  • In recent years, the proliferation of DER (distributed energy resources) is progressing rapidly. In particular, research on LVDC distribution grid with various advantages has begun. In order to commercialize this LVDC grid, direct current protection method should be established by analysis of DC faults. Recently, the development of HSCB (high-speed circuit breaker) for new ${\pm}750[V]$ LVDC grid has been researched. This paper deals with the calculation of the maximum short-circuit fault current of the HSCB as a part of the development of HSCB for the LVDC distribution grid. First, modeling using PSCAD was carried out for PV array with BESS on the Gochang Power Test Center system. Next, to calculate the rated capacity of HSCB, fault currents were calculated and the characteristics were analyzed through fault simulations. Thus, this study results can help to establish short-circuit capacity calculation of HSCB and protection plan for DC protection relay system.

Development of Fault Detector for Series Arc Fault in Low Voltage DC Distribution System using Wavelet Singular Value Decomposition and State Diagram

  • Oh, Yun-Sik;Han, Joon;Gwon, Gi-Hyeon;Kim, Doo-Ung;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.766-776
    • /
    • 2015
  • It is well known that series arc faults in Low Voltage DC (LVDC) distribution system occur at unintended points of discontinuity within an electrical circuit. These faults can make circuit breakers not respond timely due to low fault current. It, therefore, is needed to detect the series fault for protecting circuits from electrical fires. This paper proposes a novel scheme to detect the series arc fault using Wavelet Singular Value Decomposition (WSVD) and state diagram. In this paper, the fault detector developed is designed by using three criterion factors based on the RMS value of Singular value of Approximation (SA), Sum of the absolute value of Detail (SD), and state diagram. LVDC distribution system including AC/DC and DC/DC converter is modeled to verify the proposed scheme using ElectroMagnetic Transient Program (EMTP) software. EMTP/MODELS is also utilized to implement the series arc model and WSVD. Simulation results according to various conditions clearly show the effectiveness of the proposed scheme.

Detection Algorithm and Characteristics on DC Residual Current based on Analysis of IEC60479 Impedance Model for Human Body (IEC60479 인체 임피던스 모델에 근거한 직류누설전류의 특성 및 검출 알고리즘)

  • Kim, Yong-Jung;Lee, Jinsung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.305-312
    • /
    • 2018
  • DC distribution systems has recently taken the spotlight. Concerns over human safety and stability facility are raised in DC distribution systems. Std. IEC 60479 provides basic guidance on "the effects of shock current on human beings and livestock" for use in the establishment of electrical safety requirements and suggests an electrical impedance of the human body. This study analyzes impedance spectrums based on the electrical equivalent impedance circuit for the human body; human body impedances measured by experiments are analyzed below the fundamental frequency (60 Hz). The analysis shows that the equivalent impedance circuit for the human body should be modified at least in low-frequency range below the fundamental frequency (60 Hz). The DC residual current detection method that can classify electric shock accidents of humans and electric leakages of facilities is proposed by applying the analysis result. The detection method is verified by experiments on livestock.

A Study on Energy Savings of a DC-based Variable Speed Power Generation System (직류기반 가변속 발전 시스템을 이용한 에너지 절감에 관한 연구)

  • Kido Park;Gilltae Roh;Kyunghwa Kim;Changjae Moon;Jongsu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.666-671
    • /
    • 2023
  • As international environmental regulations on ship emissions are gradually strengthened, interest in electric propulsion and hybrid propulsion ships is increasing, and various solutions are being developed and applied to these ships, especially stabilization of the power system and system efficiency. The direct current distribution system is being applied as a way to increase the power. In addition, verification and testing of safety and performance of marine DC distribution systems is required. As a result of establishing a DC distribution test bed, verifying the performance of the DC distribution (variable speed power generation) system, and analyzing fuel consumption, this study applied a variable speed power generation system that is applied to DC power distribution for ships, and converted the power output from the generator into a rectifier. A system was developed to convert direct current power to connect to the system and monitor and control these devices. Through tests using this DC distribution system, the maximum voltage was 751.5V and the minimum voltage was 731.4V, and the voltage fluctuation rate was 2.7%, confirming that the voltage is stably supplied within 3%, and a variable speed power generation system was installed according to load fluctuations. When applied, it was confirmed through testing that fuel consumption could be reduced by more than 20% depending on the section compared to the existing constant speed power generation system.

Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes of a Battery Energy Storage System

  • Xie, Bing;Wang, Jianze;Jin, Yu;Ji, Yanchao;Ma, Chong
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1211-1222
    • /
    • 2018
  • This study presents a power distribution control scheme for a three-phase interleaved parallel DC/DC converter in a battery energy storage system. To extend battery life and increase the power equalization rate, a control method based on the nth order of the state of charge (SoC) is proposed for the charging and discharging processes. In the discharging process, the battery sets with high SoC deliver more power, whereas those with low SoC deliver less power. Therefore, the SoC between each battery set gradually decreases. However, in the two-stage charging process, the battery sets with high SoC absorb less power, and thus, a power correction algorithm is proposed to prevent the power of each particular battery set from exceeding its rated power. In the simulation performed with MATLAB/Simulink, results show that the proposed scheme can rapidly and effectively control the power distribution of the battery sets in the charging and discharging processes.

Characteristics Study of DC Distribution System Interconnected with PV System (태양광 발전과 연계된 직류배전 시스템의 특성연구)

  • Seo, HU;Byen, BJ;Lee, YJ;Kim, DJ;Choe, GH
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.201-202
    • /
    • 2011
  • Existing AC distribution system lower the efficiency of the commercial power, and also generate the conversion loss of renewable energy. In this study, DC distribution system interconnected with PV system is produced, and it is studied about characteristics of the system through the experiments which are uesd load of 3[kW].

  • PDF