• Title/Summary/Keyword: DC Circuit breaker

Search Result 85, Processing Time 0.019 seconds

DC Superconducting fault current limiter characteristic test with a DC circuit breaker

  • So, Jooyeong;Choi, Kyeongdal;Lee, Ji-kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.19-23
    • /
    • 2021
  • We have studied the breaking system that combines a resistive superconducting fault current limiter (SFCL) and a DC circuit breaker for DC fault current. To verify the design of the 15 kV DC SFCL, which was driven from the previous work, a 500 V DC system was built and a scale-down SFCL were manufactured. The manufactured SFCL module was designed as a bifilar coil which is a structure that minimizes inductive reactance. The manufactured SFCL module has been experiment to verify characteristics of the current-limiting performance in the DC 500 V system. Also, the manufactured FCL module was combined with the DC circuit breaker to be experimented to analyze the breaking performance. As a result of the experiment, when SFCL was combined to the DC circuit breaker, the energy dissipation received by the DC circuit breaker was reduced by up to 84% compared to when the DC circuit breaker operates alone. We are preparing methods and experiments for the optimal method for much higher performance as a future work.

Interruption analysis of the SFCL-combined DC circuit breaker system using current-limiting technology

  • Kim, Jun-Beom;Jeong, In-Sung;Choi, Hye-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.30-34
    • /
    • 2016
  • In this study, a SFCL-combined DC circuit breaker system was proposed by applying the current-limiting technology for DC circuit breaking. The SFCL-combined circuit breaker system consists of a mechanical DC circuit breaker combined with superconductors. To ensure the reliable structure and operation of the SFCL-combined circuit breaker system, a simulation grid was designed using the EMTDC/PSCAD program, and simulation was conducted. The results showed that the SFCL-combined DC circuit breaker system with superconductors limited the maximum fault current by 37%. In addition, the burden on the DC circuit breaker was decreased by 87%.

A Novel DC Solid-State Circuit Breaker for DC Grid (DC Grid를 위한 새로운 구조의 DC Solid-State Circuit Breaker)

  • Kim, Jin-Young;Kim, In-Dong;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.368-376
    • /
    • 2012
  • According to developed distributed generators, Solid State Circuit Breaker(SSCB) is essential for high power quality of DC Grid. In this paper, a simple and new structure of DC SSCB with a fast circuit breaker and fault current limiter is proposed. It can help to choice low specification of elements because of the limiting of fault current and achieve economic efficiency for minimizing auxiliary SCRs. Also all of SCRs have little switching loss because they operate under ZVS and ZCS. Through simulations and experiments of short-circuit fault, the performance characteristic of proposed circuit is verified and a guideline is so suggested that the DC SSCB is applied for a different DC grid using formulas.

A Simple-Structured DC Solid-State Circuit Breaker with Easy Charging Capability (충전 동작이 용이한 간단한 구조의 DC 반도체 차단기)

  • Kim, Jin-Young;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1575-1583
    • /
    • 2017
  • With the development of DC distribution, DC circuit breaker is required to ensure the stability of the DC grid. Unlike a mechanical circuit breaker that blocks after several tens of milliseconds, a DC SSCB(Solid-State Circuit Breaker) can break the fault well within 1 [ms], so it can prevent the damage of accident. However, the previous DC SSCB requires a lot of switching elements for charging commutation capacitors, and the control is complicated. Therefore, this paper proposes a new DC SSCB suitable for DC grid. The proposed DC SSCB is simple to control for charging commutation capacitors, and it can perform the rapid breaking and operating duty of reclosing and rebreaking. The proposed DC SSCB was designed to 380 [V] and 5 [kW] class which is suitable for residential DC distribution, and the operating characteristics of the proposed DC SSCB were verified by simulations and experiments. It is anticipated that the proposed DC SSCB may be utilized to design and realize DC grid system.

A New Reclosing and Re-breaking DC Thyristor Circuit Breaker for DC Distribution Applications

  • Kim, Jin-Young;Choi, Seung-Soo;Kim, In-Dong
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.272-281
    • /
    • 2017
  • The DC circuit breaker is essential for supplying stable DC power with the advent of DC transmission/distribution and sensitive loads. Compared with mechanical circuit breakers, which must interrupt a very large fault current due to their slow breaking capability, a solid-state circuit breaker (SSCB) can quickly break a fault current almost within 1 [ms]. Thus, it can reduce the damage of an accident a lot more than mechanical circuit breakers. However, previous DC SSCBs cannot perform the operating duty, and are not economical because many SCR are required. Therefore, this paper proposes a new DC SSCB suitable for DC grids. It has a low semiconductor conduction loss, quick reclosing and rebreaking capabilities. As a result, it can perform the operating duties of reclosing and rebreaking. The proposed DC SSCB is designed and implemented so that it is suitable for home dc distribution at a rated power of 5 [kW] and a voltage of 380 [V]. The operating characteristics are confirmed by simulation and experimental results. In addition, this paper suggests design guidelines so that it can be applied to other DC grids. It is anticipated that the proposed DC SSCB may be utilized to design and realize many DC grid systems.

Development of DC Circuit Breaker using Magnet Arc Extinguisher (자기적 아크소호 기법을 이용한 직류 차단기 개발)

  • Lee, Sung-Min;Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • In recent years, DC distribution systems are becoming hot issue due to the increase in digital loads and DC generation systems according to the expansion of renewable energy technologies. However, removing the fault current in DC grids is comparably difficult since the current in DC grids has no zero-crossing point like in AC grids. Thus, developing dedicated DC circuit breakers for DC grids is necessary to get safety for people and electrical facilities. This paper proposes magnet arc extinguishing method to develop a 300[$V_{DC}$]/10[A] DC circuit breaker. The performance of the proposed DC circuit breaker was verified by an experimental circuit breaker test system built in this research.

Experiment on DC Circuit Breaker for Inductive Load by Improved Magnetic Arc-extinguisher and Arc-Attenuation Circuit (개선된 자기소호회로와 아크전압 억제회로를 사용한 유도성 부하의 직류차단 특성 실험)

  • Lee, Sung-Min;Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.495-499
    • /
    • 2012
  • Recently, DC distribution systems become hot issues since DC type loads increase rapidly according to the expansion of IT equipment such as computers, servers, and digital devices; DC type loads will cover 50% for all electricity loads in 2020 which was mere 10% in 2000. DC distribution systems are also accelerated by the expansion of renewable power systems since they are easy to be interfaced with DC grids rather than AC grids. However, removing the fault current in DC grids is comparably difficult since the current in DC grids has non zero-crossing point like in AC grids. Thus, developing dedicated DC circuit breakers for DC grids is necessary to get safety for human and electrical facilities. Magnet arc extinguishing method is proper to small size DC circuit breakers. However, simple Magnet arc extinguishing method is not enough to break inductive fault currents. This paper proposed a novel DC circuit breaker against inductive fault current defined by IEEE C37.14-2004 Standard for Low-Voltage DC Power Circuit Breakers Used in Enclosures. The performance of the proposed DC circuit breaker was verified by an experimental circuit breaker test system built in this research.

IGBT DC Circuit Breaker with Paralleled MOV for 1,800V DC Railway Applications (직류 철도용 MOV 병렬연결 1,800V급 IGBT 직류 고속차단기 연구)

  • Han, Moonseob;Lee, Chang-Mu;Kim, Ju-Rak;Chang, Sang-Hoon;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2109-2112
    • /
    • 2016
  • The rate of rise of the fault current in DC grids is very high compared to AC grids because of the low line impedance of DC lines. In AC grids the arc of the circuit breaker under current interruption is extinguished by the zero current crossing which is provided naturally by the system. In DC grids the zero current crossing must be provided by the circuit breaker itself. Unlike AC girds, the magnetic energy of DC grids is stored in the system inductance. The DC circuit breaker must dissipate the stored energy. In addition the DC breaker must withstand the residual overvoltage after the current interruption. The main contents of this paper are to ${\cdot}$ Explain the theoretical background for the design of DC circuit breaker. ${\cdot}$ Develop the simulation model in PSIM of the real scaled DC circuit breaker for 1,800V DC railway. ${\cdot}$ Suggest design guidelines for the DC circuit breaker based on the experimental work, simulations and design process.

Analysis of Operation Characteristics of DC Circuit Breaker with Superconducting Current Limiting Element (초전도 전류제한소자를 적용한 DC 차단기의 동작 특성 분석)

  • Jung, Byung-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1069-1074
    • /
    • 2020
  • Since DC has no zero point, an arc occurs when the DC circuit breaker performs a shutdown operation. In this case, a fatal accident may occur in the circuit breaker or in the grid, depending on the magnitude of the arc. Therefore, the shutdown performance and the reliability of the circuit breaker are important in the commercialization of HVDC. In this study, a superconducting LC circuit breaker was proposed to improve the performance and the reliability of the DC circuit breaker. The superconducting LC circuit breaker applied a superconducting coil to the inductor of the existing LC circuit breaker. Other than limiting the initial fault current, it also creates a stable zero point in the event of a fault current. To verify this, simulation was performed through EMTDC/PSCAD. Furthermore, the superconducting LC circuit breaker was compared with the LC circuit breaker with a normal coil. As a result, it was found that the LC circuit breaker with the superconducting coil limited the initial fault current further by approximately 12 kA compared to the LC circuit breaker with a normal coil. This reduced the arc extinguish time by approximately 0.16 sec, thereby decreasing the elctrical power burden on the circuit breaker.

Characteristics of Interruption Ability in DC Circuit Breaker using Superconducting Coil (초전도 코일을 이용한 DC 회로 차단기의 차단 능력 특성)

  • Jeong, In-Sung;Choi, Hye-Won;Youn, Jeong-Il;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.215-219
    • /
    • 2019
  • Development of DC interruption technology is being studied actively for enhanced DC grid reliability and stability. In this study, coil type superconductor DC circuit breaker was proposed as DC interruption. It is integration technology that combined current-limiting technique using superconductor and cut-off technique using mechanical DC circuit breaker. Superconductor was applied to the coil type. In simulation, Mayr arc model was applied to realize the arc characteristic in the mechanical DC circuit breaker. PSCAD/EMTDC had used to model and perform the simulation. To find out the protection range of coil type superconductor DCCB, the working operation have analyzed based on the rated voltage of DCCB. The results confirmed that, according to apply the limiting device, the protection range was increased in twice. Therefore, the probability of failure of interruption has lowered significantly.