• Title/Summary/Keyword: DC Cable

Search Result 128, Processing Time 0.025 seconds

Analysis of the DC Resistance of the Butt Joint using the Random Contact Patterns of Strands

  • Lee, Ho-Jin;Lee, Sang-Il;Lee, Bong-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.17-21
    • /
    • 2004
  • The butt joint was verified to satisfy the thermal stability of the ITER magnet system through the ITER CS model coil test. Since the contact area in the butt joint is limited to the cross section of the cable, it is necessary to analyze and control the joining parameters precisely for improving the DC resistance. It is difficult to simulate the cables, which are composed of a lot of strands, as three-dimensional models using the commercial code. The random numbers were used to simulate many kinds of contact patterns of the strands on the bonding surface for calculating the bonding area and the DC resistance of the butt joint. The calculated DC resistance decreases with an increase of cable filling factor in terminal. The calculated DC resistance of a 0.9 cable filling factor is about 0.48 n-Ohm, which is about one-tenth of that in the CS model coil test when not considering the electrical contact resistance. From this difference, the electrical contact resistance between the strands and copper sheet was calculated.

An optimal design guideline for voltage drop of DC distribution system with batteries (예비축전지를 갖는 배전계통 전압강하의 비용최적 설계)

  • Cho, Il-Kwon;Kim, Marn-Go
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.400-402
    • /
    • 1994
  • The voltage drop in distribution path of battery-reserved DC power system can affect the total of battery, cable and electricity costs. To determine an optimum voltage drop in distribution path for minimizing the total cost, battery, cable and electricity costs are represented as a function of the voltage drop, respectively, and are summed up to the total cost. An optimum voltage drop is selected as the value giving the minimum total cost. In this paper, a design technique of optimum voltage drop in distribution path of DC power system is proposed to minimize the total of battery, cable and electricity costs. The design procedure is described and design curve for selecting optimum voltage drop is also presented as a function of distribution distance.

  • PDF

A Characteristics of Large Current and Minimum Quench Energy on Prototype High-$T_c$ Superconducting Cable (Prototype 고온초전도 케이블의 최소 Quench에너지 및 대전류 특성)

  • Kim, Sang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.236-242
    • /
    • 2000
  • NZP velocities were investigated on Ag sheathed multi filamentary Bi-2223 tape and direction type HTS cable. The critical current($I_c$) of Ag sheathed Bi-2223 tape and direction type HTS cable were 12 A, 63 A at 77 K, 0 T. NZP velocities of tape with two condition of DC and AC were almost same at each temperature. In case of DC, the NZP velocities of numerical analysis and experiment were almost same. NZP velocities of direction type HTS cable were 1.9-2.4 cm/sec. The result shows that the total transport current of spiral type HTS cable in $LN_2$ was 475[A], and transport current passed through almost the outer layer (2-layer). Also, AC transport losses in outer layer of HTS cable was proportion to $I^2$ and higher than losses of inner layer. And in case of $I_p=I_c$, calculated numerical loss density was concentrated on the edge of tape and most of loss density in cable was distributed outer layer more than inner layer.

  • PDF

DC Performance of $Nb_3$Sn Cable Joints with multi-interfaces (다수의 접합경계를 갖는 $Nb_3$Sn 케이블 접합부의 직류 저항 특성)

  • 이호진;김기백;연제욱;홍계원;김기만
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.170-176
    • /
    • 2000
  • The joints with multi-interfaces was expected to have low DC resistance compared with those with single interface. The small size joint specimens joined with Nb3Sn sub-cables were fabricated to investi-gate the DC performance in the range of 0 to 600A transport current without external magnetic field. The joints with multi-interfaces have a few n-Ohm resistance, which is much lower than that of single lap joint. Because the interfaces between sub-cables of multi-interfaced joint are more complicated than those of single-interfaced joint, the soldering condition between sub-cables is very effective on the joint DC resistance.

  • PDF

Design and Properties of a Self Generation Equipment using Current Transformer (변류기를 이용한 자가발전 장치의 설계와 특성)

  • Byun, W.B.;Kim, H.S.;Kim, J.R.;Lee, H.Y.;Lee, J.H.;Ji, M.K.;Lee, J.;Oh, Y.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.427-428
    • /
    • 2008
  • We have studied design and application about an self generation equipment for underground power transmission cable. The split CT(Current Transformer), which has the applicable underground power transmission cable, was manufactured through electromagnetic simulation of magnetic core. And manufactured the AC-DC converter that supplied stable DC power for PLC modem when current of power line has more than 150A. An self generation equipment using the CT and AC-DC converter get into operation the PLC modem consistently. As a result, the underground power transmission cable was showed the application possibility through the stable communication and network characteristics.

  • PDF

High Efficiency Step-Down Flyback Converter Using Coaxial Cable Coupled-Inductor

  • Kim, Do-Hyun;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.214-222
    • /
    • 2013
  • This paper proposes a high efficiency step-down flyback converter using a coaxial-cable coupled-inductor which has a higher primary-secondary flux linkage than sandwich winding transformers. The structure of the two-winding coaxial cable transformer is described, and the coupling coefficient of the coaxial cable transformer and that of a sandwich winding transformer are compared. A circuit model of the proposed transformer is also obtained from the frequency-response curves of the secondary short-circuit and of the secondary open-circuit. Finally, the performance of the proposed transformer is validated by the experimental results from a 35W single-output flyback converter prototype. In addition, the proposed two-winding coaxial transformer is extended to a multiple winding coaxial application. For the performance evaluation of the extended version, 35W multi-output hardware prototype of the DC-DC flyback converter was tested.

Novel Roaming and Stationary Tethered Aerial Robots for Continuous Mobile Missions in Nuclear Power Plants

  • Gu, Beom W.;Choi, Su Y.;Choi, Young Soo;Cai, Guowei;Seneviratne, Lakmal;Rim, Chun T.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.982-996
    • /
    • 2016
  • In this paper, new tethered aerial robots including roaming tethered aerial robots (RTARs) for radioactive material sampling and stationary tethered aerial robots (STARs) for environment monitoring are proposed to meet extremely-long-endurance missions of nuclear power plants. The flight of the proposed tethered aerial robots may last for a few days or even a few months as long as the tethered cable provides continuous power. A high voltage AC or DC power system was newly adopted to reduce the mass of the tethered cable. The RTAR uses a tethered cable spooled from the aerial robot and an aerial tension control system. The aerial tension control system provides the appropriate tension to the tethered cable, which is accordingly laid down on the ground as the RTAR roams. The STAR includes a tethered cable spooled from the ground and a ground tension control system, which enables the STAR to reach high altitudes. Prototypes of the RTAR and STAR were designed and successfully demonstrated in outdoor environments, where the load power, power type, operating frequency, and flight attitude of the RTAR and STAR were: 180 W, AC 100 kHz, and 20 m; and 300 W, AC or DC 100 kHz, and 80 m, respectively.

Protection of the MMCs of HVDC Transmission Systems against DC Short-Circuit Faults

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.242-252
    • /
    • 2017
  • This paper deals with the blocking of DC-fault current during DC cable short-circuit conditions in HVDC (High-Voltage DC) transmission systems utilizing Modular Multilevel Converters (MMCs), where a new SubModule (SM) topology circuit for the MMC is proposed. In this SM circuit, an additional Insulated-Gate Bipolar Translator (IGBT) is required to be connected at the output terminal of a conventional SM with a half-bridge structure, hereafter referred to as HBSM, where the anti-parallel diodes of additional IGBTs are used to block current from the grid to the DC-link side. Compared with the existing MMCs based on full-bridge (FB) SMs, the hybrid topologies of HBSM and FBSM, and the clamp-double SMs, the proposed topology offers a lower cost and lower power loss while the fault current blocking capability in the DC short-circuit conditions is still provided. The effectiveness of the proposed topology has been validated by simulation results obtained from a 300-kV 300-MW HVDC transmission system and experimental results from a down-scaled HVDC system in the laboratory.

Calculation of DC resistance of strand-to-strand joints for KSTAR (KSTAR 용 소선-소선 접합부의 직류저항 계산)

  • Ho-Jin Lee;Hyun-Il Nam;Ki-Baik Kim;Gye-Won Hong
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.104-110
    • /
    • 2001
  • Since the strand-to-strand type joint far CICC (Cable-In-Conduit Conductor) is small in size and has low DC resistance, it is expected to be useful type fur a superconducting magnet system which had a compact structure like the KSTAR (Korea Superconducting Tokamak Advanced Research) coil system. The DC resistance is changed according to the distribution patterns of strands in cables connected together in the joint. A commercial code was used for the calculation of the DC resistance. With the decrease of outer diameter of the Joint, Which means the increase of strand volume fraction in the joint, the calculated DC resistance decrease rapidly and non-lineally. The variation of resistance depends mainly on the volume fraction of solder which has higher resistivity than copper. The resistance decrease inversely with the increase of the length of the joint. The resistance increase with increase of number of triplets in each stack contacted with that of another terminal cable. In case of the strand-to-strand joint that has 62mm of outer diameter, 52mm of inner diameter, 100mm of overlap length, and four triplets in each stack, the calculated DC resistance is less than 1 n-Ohm.

  • PDF

Residual Insulation characteristics of long-term serviced 6.6 kV CV Cable (6.6kV 철거 CV 케이블의 잔존 절연 특성)

  • 백주흠;김동욱;한기만
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.46-49
    • /
    • 1994
  • In order to investigate possibility of CV cable diagnosis technique, residual insulation characteristics of .long - term serviced 0.6 kV CV Cable are examined by DC leakage current residual voltage tensile strength, cross1inking density and AC & impulse breakdown. Also effect of cable structure and water tree are reported

  • PDF