• Title/Summary/Keyword: DC서보

Search Result 198, Processing Time 0.025 seconds

Design of a Adaptive High-Gain Observer for Speed-Sensorless Control of DC Servo Motor (센서없는 직류서보전동기의 속도 제어를 위한 적응 고이득 관측기 설계)

  • 김상훈;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.663-670
    • /
    • 2003
  • This paper deals with speed control of DC servo motor using a Adaptive high gain obserber. In this parer, the gain of the observer is properly set up using the fuzzy control and adaptive high gain observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. In order to verify the performance of the Adaptive high gain observer which is proposed in this paper, it is compared estimate performance of High-gain Observer and Adaptive High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with Adaptive high gain observer in the speed control of DC servo motor.

Position Control For A DC Servo Motor Using Adaptive Fuzzy Algorithm (적응퍼지 알고리즘을 이용한 DC서보 전동기의 위치제어)

  • Ji, Sung-Hyon;Son, Jae-Hyun;Jeon, Byong-Tae;Lim, Jong-Kwang;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.485-488
    • /
    • 1993
  • Fuzzy Logic Control immitating human decision making process is a novel control strategy based on expert's experience and knowledge and many process designers are developing its applications. But it is difficult to obtain a set of ruler from human operators. And there is a limitation on adjusting to environmental changes. In this paper, we proposed adaptive fuzzy algorithm to overcome these difficulties using weights added to the rules. To verify the validity of this control strategy, we have implemented this algorithm for a DC servo motor with PD-type fuzzy controller.

  • PDF

Speed Control Of Sensorless DC Servo Motor Using Fuzzy-Tuning High-Gain Observer (피지동조 고이득 관측기를 이용한 속도센서없는 직류 서보전동기의 속도제어)

  • Kang, Sung-Ho;Yoon, Kwang-Ho;Kim, Sang-Hun;Kim, Lak-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.480-483
    • /
    • 2003
  • This paper deals with speed control of Sensorless DC servo motor using a FTHGO(FuzEy-Tuning High Gain observer). In this paper, we improved the problem from row speed section, the problem of sensor for detecting speed of motor, using FTHGO(Fuzzy-Tuning High-Gain Observer) with fuzzy control technique which is a class of adaptive control technique. In order to verify the performance of the FTHGO(Fuzzy-Tuning High Gain Observer) which is proposed in this paper, it is proved from the experiment to compare the case with a speed sensor to the case with FTHGO(Fuzzy-Tuning High Gain observer) in the speed control of DC servo motor.

  • PDF

Design of a Neuro-Fuzzy Observer for Speed-Sensorless Control of DC Servo Motor (직류 서보 전동기 센서리스 속도제어를 위한 뉴로-퍼지 관측기 설계)

  • Ahn, Chang-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.129-135
    • /
    • 2007
  • This paper deals with speed-sensorless control of DC servo motor using Neuro-Fuzzy Observer. DC servo motor has very low rotor inertia and excellent response characteristic and it is very useful to control torque and speed. It is easy to detect the voltage and current and resolver or encoder is used to measure a rotor speed. But it has a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve this problem, it is studied to detect a speed of DC servo motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this paper, the gain of the observer is properly set up using the Neuro-Fuzzy control and Neuro-Fuzzy Observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. It calculates the differentiation of the rotor current directly using the rotor current measured in the DC servo motor and estimates the speed of the rotor using the differentiation. Proposed speed sensorless control method is performed using the estimated speed. Also, it is proved feasibility of the proposed observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200[w] DC servo motor starting system.

Design of a Fuzzy-Sliding Observer for improvement of low speed operation of DC Servo Motor (직류 서보전동기 저속운전 성능개선을 위한 퍼지-슬라이딩 관측기설계)

  • 고봉운;김상훈;김낙교
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.153-156
    • /
    • 2004
  • This Paper deals with speed control of DC servo motor using a Fuzzy-Sliding observer. Speed sensor detect a speed of rotor continuously. But It have a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system To solve the problem, it is studied to detect a speed of DC motor without sensor In particular, study on the method to estimate the speed using the observer is performed a lot. In this parer, the gain of the observer is properly set up using the fuzzy control and sliding observer that have a superior transient characteristic and is easy to implement compared the exist ing method is designed. It estimate the derivative of the armature current directly using the armature current measured in the DC motor. It estimate the speed of the rotor using the differentiation. It is Proposed speed sensor less control method using the estimated speed. Optimal gain of Luenberger observer is set up using the fuzzy control and adapted speed control of DC servo motor. It is proved excellence and feasibility of the presented observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200W DC servo motor start ing system.

  • PDF

Improvement of Low Speed Operation Characteristic of DC Servo Motor Using a Fuzzy Tuning Speed Observer (퍼지동조 속도관측기를 이용한 직류서보전동기의 저속운전 특성 개선)

  • Ahn, Chang-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.244-249
    • /
    • 2008
  • This paper deals with speed control of DC servo motor using a Fuzzy tuning observer. Speed sensor detect a speed of rotor continuously. But it have a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve the problem, it is studied to detect a speed of DC motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this parer, the gain of the observer is properly set up using the fuzzy observer. The fuzzy observer has a superior transient characteristic and is easy to implement compared the existing method is designed. It estimate the derivative of the armature current directly using the armature current measured in the DC motor. It estimate the speed of the rotor using the differentiation. It is proposed speed sensorless control method using the estimated speed. Optimal gain of Luenberger observer is set up using the fuzzy observer and adapted speed control of DC servo motor low speed operation. It is proved excellence and feasibility of the presented observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200W DC servo motor starting system.

Speed-Sensorless Speed Control of DC Servo Motor Using a High Gain Observer (고이득 관측기를 이용한 직류서보전동기의 속도 센서리스 속도제어)

  • Him, Sang-Hoon;Kim, Myung-Joon;Yun, Kwang-Ho;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2203-2205
    • /
    • 2003
  • In this thesis, it is a purpose to carry out speed control of DC servo motor without using encoder and the resolver which are speed sensor of DC servo motor and it should use estimate algorithm or observer and must assume a speed in order to control speed sensorless. Therefore, high gain observer was designed to estimate rotor speed of DC servo motor and it carries out speed control from the feedback of the speed that assumed done in the thesis. Also, implementation used easy PI controller in speed-controller of DC motor though it was simple. It is compared estimate performance of Luenberger and high gain observer in a way of computer simulation in order to verify performance of the high gain observer which proposed in this thesis, and proved excellency of the high gain observer. And the thesis proved that smooth speed sensorless control of DC servo motor was implemented in invariable driving.

  • PDF

Comparison of CDBC controller of DC Servo Motor (DC 서보모터의 CDBC 제어기 비교)

  • 김진용;유항열;김성열;이정국;이금원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2593-2596
    • /
    • 2003
  • The deadbeat properties have been well known in designing digital control systems. But recently several researchers proposed a CDBC(Continuout-time DeadBeat Controller) in continuous time. They used delay or smoothing elements from the finite Laplace Transform. A delay element is made by the exponential terms. A smoothing element is used to smooth the digital control input. And eventually the process is argumentd with smoothing elements and then well-known digital deadbeat controller is designed Sometimes samplings are done in continuous time systems and some hold devices are used to relate to digital systems. So multirate sampling may enhance the efficiency of the CDBC. A DC servo motor is chosen for implementing CDBC algorithm. Especially Outputs according to the variable input and disturbance are simulated. by use of Matlab Simulink.

  • PDF

An implementation of the speed controller for DC servomotor using adaptive control algorithm and 80286 $\mu$-processor (적응제어 알고리즘과 80286 마이크로 프로세서를 이용한 DC 서보모터의 강인한 속도제어기의 구현)

  • Kim, Joong-Suk;Yi, Keon-Young;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.353-356
    • /
    • 1991
  • This paper proposes a robust direct adaptive control system implementation using a 80286 microprocessor-based system for controlling the speed of a DC servo motor. In this paper, assuming that the unmodeled dynamics of the plant are sufficiently small in the low-frequency range, the plant as linear time-invariant system is the second relative degree, we construct the direct adaptive control system with the algorithm considering plant unmodeled dynamics and execute the experiment, and compare the characteristics with those of PI algorithm's. It shows that an easy implementation of the built controller is due to the usage of software for the algorithm.

  • PDF