• Title/Summary/Keyword: DBPs

Search Result 95, Processing Time 0.018 seconds

Evaluation of the Characteristics of THM Formation by Chlorination in Extracted Humic Acid from Nakdong River (낙동강 원수에서 추출한 Humic Acid에서의 염소처리에 의한 THM 생성 특성 평가)

  • Son, Hee-Jong;Roh, Jae-Soon;Bae, Sang-Dae;Choi, Young-Ik;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.412-418
    • /
    • 2007
  • The purpose of this study was to determine the several factors for affecting chlorine disinfection by-products(DBPs) characteristics by reacting chlorine and organic matters in the aquatic phase. The results of this research yield the following specific conclusions: The concentration of trihalomethanes(THMs) was increased with increasing dissolved organic carbon(DOC), and a trend of THMs formation was parabolic with increasing organic matters. Formations of THMs increased straightly for the first 4 hours and the amounts of producted THMs for the 30 minutes were up to $25\sim43%$ in the entire experiment periods(168 hours). When keeping up the concentration of organic matters at constant and changing that of bromide, the quantity of formed THMs did not show distinguished difference with the reaction times. THMs were gradually increased at $4^{\circ}C$ even though a reaction phase was parabolic formation(PF) phase. However, THMs were increased rapidly in the instantaneous formation(IF) phase and then became slowdown in the PF phase between $20\sim35^{\circ}C$. THMs were gradually increased although entering in the PF phase at pH 5. However, THMswere increased rapidly in the IF phase and then became slowdown in the PF phase at pH 7 and pH 9, and these treads were much more clear at pH 9 than at pH 7.

Analysis of Trace Levels of Lodinated Trihalomethanes in Water Using Headspace - GC/ECD (Headspace - GC/ECD를 이용한 수중의 미량 요오드계 트리할로메탄류 분석)

  • Son, Hee-Jong;Song, Mi-Jung;Kim, Kyung-A;Yoom, Hoon-Sik;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Trihalomethanes (THMs) are formed as a results of the reaction of residual chlorine, used as a disinfectant in drinking water, with the organic matter in raw water. Although chlorinated and brominated THMs are the most common disinfection byproducts (DBPs) reported, iodinated THMs (I-THMs) can be formed when iodide is present in raw water. I-THMs have been usually associated with several medicinal or pharmaceutical taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated and chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. An automated headspace-gas chromatography/electron capture detector (GC/ECD) technique was developed for routine analysis of 10 THMs including 6 I-THMs in water samples. The optimization of the method is discussed. The limits of detection (LOD) and limits of quantification (LOQ) range from 12 ng/L to 56 ng/L and from 38 ng/L to 178 ng/L for 10 THMs, respectively. Matrix effects in river water, sea water and wastewater treatment plant (WWTP) final effluent water were investigated and it was shown that the method is suitable for the analysis of trace levels of I-THMs, in a wide range of waters. The method developed in the present study has the advantage of being rapid, simple and sensitive.

Operation of Advanced Water Treatment Processes for Downstream River Source Water (상수원수의 고도정수처리 공정 파일롯 운전 연구)

  • Wang, Chang-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Down Stream K River has high COD (4-10 mg/L) and high $NH_3$-N concentration (3.5 mg/L during winter period). Although $NH_3$-N itself is not reported harmful at this level, it must be removed to meet drinking water standard (0.5 mg/L). We constructed a pilot plant modifying the processes of conventional drinking water facilities. Prechlorination and powdered activated carbon (PAC) dechlorination was adopted prior to a flocculation tank to remove ammonia and prevent disinfection byproducts (DBPs) formation. Also, GAC processes was included after sand filter to remove residual DOC. This pilot having a capacity of 36 ton/day was operated for one year. The GAC processes were successful to remove ammonia and many organic pollutants (DOC, MBAS, UV-254 nm absorbance, etc). Influent DOC concentrations were very high as 3~6 mg/L throughout the plant operation. It was impossible to achieve 1.0 mg/L effluent DOC, indicating that bed depth (2 m) should be increased to achieve more strict DOC quality standards. When $Cl_2$ dose was well controlled ($Cl_2/NH_3$-N ratio 10~11 on a weight basis), $NH_3$-N removal was 98% and THMs was very low possibly due to low free residual chlorine and PAC dechlorination.

The study of analysis of mutagen in drinking water (음용수 중 변이원성 물질(MX)에 관한 연구)

  • Yoo, Eun-Ah;Won, Jung-In
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.290-300
    • /
    • 2006
  • Disinfection by-products(DBPs), such as volatile trihalomethanes and the nonvolatile organochlorine acids, created by chlorination have been extensively studied. However MX which contributes 20-50% of the mutagenic activity in drinking water began to people's attention since 1990. Its chemical name is 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone. According to WHO guidelines its concentration should be controlled, but its value has not been set up. Due to analytical difficulties in measuring this compound at such a low concentrations and lack of information on toxicity to human. Because concentration (ng/L) of MX in drinking water is low traditional testing methods are ineffective. Therefore this study compared LLE and SPE and have chosen SPE to improve preconcentration. MX has been identified in chlorinated drinking water samples in several countries but not in korea Therefore this study analyzed concentration of MX in different water sources and in spring water. This study examined the causes of changing MX content. Chlorine dosage, seasons, water temperature and distance from the source was all discoverd to be relavant. MX was analyzed in various treatment to find optimum disinfection methods. The outcome was that the concentration of MX was minimized when using biological activated carbon-O3 and granular activated carbon.

The Removal of Natural Organic Matter and Disinfection By-Product Precursor by Ozone (오존처리에 의한 천연유기물질 변화 및 염소 소독부산물 전구물질 제어)

  • Son, Hee-Jong;Roh, Jae-Soon;Kim, Sang-Goo;Kang, Lim-Seok;Lee, Yong-Doo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1099-1107
    • /
    • 2005
  • The purpose of this study was to find the transformation of organic matter as well as chlorine by product formation potential with ozone dosage. The removal percents of $UV_{254}$ and DOC were $23%{\sim}65%$ and $2%{\sim}15%$ and THMFP and HAAFP were $17%{\sim}52%$ and $9%{\sim}29%$ respectively at $0.5{\sim}3\;mgO_3/mgDOC$ ozone dosage. The hydrophobic and transphobic organic matter were reduced to $37%{\sim}68%$ and $35%{\sim}64%$, on the other hand the hydrophilir organic matter was increased to $40%{\sim}49%$ at $0.5{\sim}3\;mgO_3/mgDOC$ ozone dosage. The produced THMFP and HAAFP from the hydrophobic and transphilic organic matter were decreased greatly with increasing ozone dosage but these by products were increased in the hydrophilic matter. The produced THMFP and HAAFP per unit DOC were decreased and reactivity was reduced greatly with increasing crone dosage. The removal rate of THMFP per unit DOC was much higher than HAAFP by ozone treatment. The Br-THMFP per unit DOC was much more removed than chloroformFP per unit DOC with increasing ozone dosage. and The removal rate of TCAAFP per unit DOC was increased with increasing ozone dosage but TCAAFP was not affected by ozone treatment. Br-HAAFP was decreased at $1\;mgO_3/mgDOC$ ozone dosage but was not more removed above $1\;mgO_3/mgDOC$ ozone dosage. Br-HAAFP had lower removal effect than Br-THMFP by ozone treatment. The optimal ozone dosage can be determined about $1\;mgO_3/mgDOC$ by considering both disinfection by product formation and economical efficiency.