• Title/Summary/Keyword: DBD (Dielectric Barrier Discharge)

Search Result 169, Processing Time 0.029 seconds

Optical Emission Characteristics of Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전의 발광특성)

  • Kim, Jin Gi;Kim, Yoon Kee
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.100-106
    • /
    • 2015
  • Plasma properties of dielectric barrier discharges (DBDs) at atmospheric pressure were measured and characterized using optical emission spectroscopy. Optical emissions were measured from argon, nitrogen, or air discharges generated at 5-9 kV using 20 kHz power supply. Emissions from nitrogen molecules were markedly measured, irrespective of discharge gases. The intensity of emission peaks was increased with applied voltage and electrode gap. The short wavelength peaks (315.9 nm and 337.1 nm) measured at the middle of DBDs were significantly increased with applied voltage. The optical emission from DBDs decreased with the addition of oxygen gas, which was especially significant in argon discharge. Emission from oxygen molecules cannot be measured from air discharge and argon discharge with 4.8% oxygen. The emission intensity at 337.1 nm and 357.7 nm related with nitrogen molecule was sensitively changed with electrode types and discharge voltages. However, the pattern of argon emission spectrum was nearly the same, irrespective of electrode type, oxygen content, and discharge voltage.

The Surface Energy Change of TAC Film Treated by an Atmospheric Pressure Plasma (대기압 플라즈마 처리에 의한 TAC 필름의 표면에너지 변화)

  • Lee, Chang-Ho;Jung, Do-Young;Park, Young-Jik;Song, Hyun-Jig;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.184-190
    • /
    • 2009
  • Tri-acetyl-cellulose(TAC) film surface was modified by atmospheric-pressure plasma technique to obtain the hydrophilic functional groups and improve the contact angle. TAC film was modified with N2 plasma ionized in dielectric barrier discharge(DBD) reactor under atmospheric pressure. We measured the change of the contact angle and the surface energy with respect to the plasma treatment conditions such as plasma treatment power, discharge gap and N2 gas flow rate. As the plasma treatment speed of 100[mm/sec], the plasma treatment power of 1.5[kW], discharge gap 2[mm] and the $N_2$ gas flow rate 140[LPM], the best contact angle and the highest surface energy were obtained. The degree of hydrophilization depended strongly on the plasma-treating time and discharge power.

Development of an advanced atmospheric pressure plasma source with high spatial uniformity and selectiveness for surface treatment

  • Im, Yu-Bong;Choe, Won-Ho;Lee, Seung-Hun;Han, U-Yong;Lee, Jong-Hyeon;Lee, Sang-Gyun;Ha, Jeong-Min;Kim, Jong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.176-177
    • /
    • 2016
  • In the last few decades, attention toward atmospheric pressure plasma (APP) has been greatly increased due to the numerous advantages of those applications, such as non-necessity of high vacuum facility, easy setup and operation, and low temperature operation. The practical applications of APP can be found in a wide spectrum of fields from the functionalization of material surfaces to sterilization of medical devices. In the secondary battery industry, separator film has been typically treated by APP to enhance adhesion strength between adjacent films. In this process, the plasma is required to have high stability and uniformity for better performance of the battery. Dielectric barrier discharge (DBD) was usually adopted to limit overcurrent in the plasma, and we developed the pre-discharge technology to overcome the drawbacks of streamer discharge in the conventional DBD source which makes it possible to produce a super-stable plasma at atmospheric pressure. Simulations for the fluid flow and electric field were parametrically performed to find the optimized design for the linear jet plasma source. The developed plasma source (Plasmapp LJPS-200) exhibits spatial non-uniformity of less than 3%, and the adhesion strength between the separator and electrode films was observed to increase 17% by the plasma treatment.

  • PDF

Analysis of reactive species in water activated by plasma and application to seed germination

  • Choi, Ki-Hong;Lee, Han-Ju;Park, Gyungsoon;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.162.1-162.1
    • /
    • 2015
  • The use of plasma has increased in bio-application field in recent years. Particularly, water treated by arc discharge or atmospheric pressure plasma has been actively utilized in bio-industry. In this study, we have developed a plasma activated water generating system. For this system, two kinds of plasma sources; dielectric barrier discharge (DBD) plasma and arc discharge plasma have been used. The discharge energy was calculated using the breakdown voltage and current, and the emission spectrum was measured to investigate the generated reactive species. We also analyzed the amount of reactive oxygen and nitrogen species in water using the chemical methods and nitric oxide sensor. Finally, the influence of plasma generated reactive species on the germination and growth of spinach (Spinacia oleracea) was investigated. Spinach is a green leafy vegetable that contains a large amount of various physiologically active organic compounds. However, it is characterized with a low seed germination rate.

  • PDF

High Speed Etching for Saw Damage Removal Using by RF DBD

  • Go, Min-Guk;Yang, Jong-Geun;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.139.2-139.2
    • /
    • 2013
  • 6" Multi-crystal Silicon wafer has etched suing a remote - type RF Dielectric barrier discharge (RF DBD) at atmospheric pressure. DBD source is composed of Al electrode and coated Al2O3 dielectric as function of Ar/NF3 gas combination and input power used 13.56 MHz power supply. Ar gas flow rate is changed from 2 to 10 Slm, and NF3 flow rate is changed from 0.2~1 slm. At the result, NF3 flow rate Si etching rate also increase whit the increasing of NF3 flow rate But at 2 slm etching rate was decrease. In this experience, Max etching rate is 2.3 ${\mu}m/min$ when the scan time is 45 sec.

  • PDF

Plasma etching of $SiO_2$ using dielectric barrier discharge in atmospheric pressure (Dielectric Barlier Discharge type 대기압 플라즈마 발생장치를 이용한 $SiO_2$ 식각에 관한 연구)

  • O, Jong-Sik;Park, Jae-Beom;;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.95-95
    • /
    • 2009
  • 대기압 플라즈마 발생장치를 이용한 식각장비 개발은 낮은 공정단가, 저온 공정, 다양한 표면처리 응용 효과와 같은 이점을 가지고 있어 현재, 많은 분야에서 연구되고 있다. 본 연구에서는, dielectric barrier discharge(DBD) 방식을 이용한 대기압 발생장치를 통해 평판형 디스플레이 제작에 응용이 가능한 $SiO_2$ 층의 식각에 대한 연구를 하였다. $N_2/NF_3$ gas 조합에 $CF_4$ 또는 $C_{4}F_{8}$ gas를 부가적으로 첨가하였다. 이때 N2 60 slm / NF3 600 sccm/CF4 7 slm/Ar 200 sccm의 gas composition에서 최대 260 nm/min의 식각 속도를 얻을 수 있었다.

  • PDF

Comparative Studies on Soot Oxidation by Nitrogen Dioxide and Ozone

  • Purushothama, C.;Chen, Xin-Hong;Li, Ming-Wei;Chae, Jae-Ou;Sim, Ju-Hyen
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.117-121
    • /
    • 2006
  • Non-thermal plasma technology has many applications in various areas. One of the applications is regenerating diesel particulate filter (DPF). DPF is a widely applied device to control the particulate emission of diesel engines. But it needs periodic removal of clogged soot for the smooth running of engine. Conventional high-temperature removal processes easily leads to the breakage of DPF. Herein, low-temperature plasma formed in a dielectric barrier discharge (DBD) reactor was used to form active oxidants such as ozone and nitrogen dioxide. Experimentally, the effects of discharge power and frequency on the performance of DBD reactor were studied. Two oxidants, $O_3$ and $NO_2$, were synthesized and used for incinerating soot in the used DPF. Performances of the two oxidants on the reduction of soot were compared, and it was found that $NO_2$ is more effective than $O_3$ for getting rid of soot

  • PDF

Surface Properties of Polyimide Modified with He/O2/NF3 Atmospheric Pressure RF Dielectric Barrier Discharge (대기압 RF DBD 방전으로 개질된 폴리이미드의 표면특성)

  • Lee, Su-Bin;Kim, Yoon-Kee;Kim, Jeong-Soon
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.543-549
    • /
    • 2006
  • Polyimides (PI) are treated with $He/O_2$ and $He/O_2/NF_3$ atmospheric pressure rf dielectric barrier discharge in order to investigate the roles of $NF_3$ that is one of the PI etching gases. Surface changes are analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurement. The surface roughness of PI and the ratio of C=O, which is hydrophilic functional group, is more increased by $He/O_2/NF_3$ discharge than by $He/O_2$ discharge. The C=O species on the PI surface is increased up to 30 percent with rf power. The surface roughness of PI is increased from 0.4 to 11 nm with rf power. The water drop contact angles on PI, however, are reduced from $65^{\circ}\;to\;9^{\circ}$ by plasma treatment independently of $NF_3$.

Development of Plasma Reactor of Dielectric Barrier Discharge for Water Treatment (수처리용 유전체 장벽 방전 플라즈마 반응기 개발)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.597-603
    • /
    • 2012
  • Non-thermal plasma processing using a dielectric barrier discharge (DBD) has been investigated as an alternative method for the degradation of non-biodegradable organic compounds in wastewater. The active species such as OH radical, produced by the electrical discharge may play an important role in degrading organic compound in water. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO) was investigated as an indicator of the generation of OH radical. The DBD plasma reactor of this study consisted of a plasma reactor, recycling pump, power supply and reservoir. The effect of diameter of external reactor (15 ~ 40 mm), width of ground electrode (2.5 ~ 30 cm), shape (pipe, spring) and material (copper, stainless steel and titanium) of ground electrode, water circulation rate (3.1 ~ 54.8 cm/s), air flow rate (0.5 ~ 3.0 L/min) and ratio of packing material (0 ~ 100 %) were evaluated. The experimental results showed that shape and materials of ground were not influenced the RNO degradation. Optimum diameter of external reactor, water circulation rate and air flow rate for RNO degradation were 30 mm, 25.4 cm/s and 4 L/min, respectively. Ground electrode length to get the maximum RNO degradation was 30 cm, which was same as reactor length. Filling up of glass beads decreased the RNO degradation. Among the experimented parameters, air flow rate was most important parameters which are influenced the decomposition of RNO.

DBD를 이용한 Plasma Jet의 구동 전극 위치에 따른 방전 특성 분석

  • Lee, Yeong-Ho;Ha, Chang-Seung;Lee, Ho-Jun;Kim, Dong-Hyeon;Lee, Hae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.226-226
    • /
    • 2011
  • 소형 대기압 플라즈마 소스는 그 형태에 따라 DBD (Dielectric Barrier Discharge)나 Plasma Needle, 혹은 Plasma Jet 등으로 구별되며, 구동 파형의 특성에 따라 DC, RF (Radio Frequency), 혹은 Pulsed 방식 등으로 나뉜다. 또한 코로나 방전도 소형 대기압 플라즈마 장치에서 사용된다. DBD는 1857년 Siemens에 의해 최초로 보고 되었고 산업 분야에서 대규모로 사용되어 왔다. 본 연구에서는 대향 방전 DBD 대신 유전체 양쪽 면에 전극이 도포된 면방전 형태의 DBD 구조 내부로 He 가스가 흐를 때의 방전에 대한 광학적 진단을 수행하였다. 전극간의 거리와 가스 유속의 변화에 따라 방전 특성이 어떻게 달라지에 대해서 Optical Emission Spectroscopy (OES)를 통하여 생성되는 radical 종의 변화를 측정하고 ICCD (intensified charge coupled device) image를 통해 방전이 시간에 따라 어떻게 진행되는지를 진단하였다.

  • PDF