The proposed system was composed of pre-processor which was executing binary/high-pass filtering and post-processor which ranged from statistic data to prediction. In post-processor work, step one was filter process of image, step two was image recognition, and step three was destruction degree/time prediction. After these processing, we could predict image of the last destruction timestamp. This research was produced variation value according to growth of tree pattern. This result showed improved correction, when this research was applied image Processing. Pre-processing step of original image had good result binary work after high pass- filter execution. In the case of using partial discharge of the image, our research could predict the last destruction timestamp. By means of experimental data, this Prediction system was acquired ${\pm}$3.2% error range.
This paper suggests constraint data modeling based on constraint data presentation techniques to perform complex spatial database operation naturally. We were able to identify the limitation of extendibility of dimension and non-equal framework via relevant research for former schema of spatial database and query processing. Therefore we described generalized tuple of spatial data and the definition of suggested constraint data modeling. Also we selected MLPQ/PReSTO tool among constraint database prototype and compare standard functionality of ARC/VIEW. Then we design scenario for spatial operation using MLPQ/PReSTO and we suggested application effect after query processing. Based on above explanation, we were able to identify that we can process spatial data naturally and effectively using simple constraint routine on same framework via constraint data modeling.
본 연구에서는 지리정보시스템(GIS)을 사용하여 Visual MODFLOW 지하수 유동 모델링 툴에 필요한 입력 인자(자료)를 과학적으로 만들어줄 뿐만 아니라, 모델링을 위해 입력된 인자들과 모델링 후 생성된 결과물들을 DB화하고 이를 체계적으로 관리할 수 있도록 하는 Visual MODFLOW 지하수 유동 모델링을 위한 GIS 기반 전 후처리기를 개발하였다. 이 전 후처리기의 모듈로서 가장 특징적인 것은 모델구역 내에서 관정 주변에 상대적으로 조밀하게 즉, 셀의 크기가 다양한 그리드를 GIS ArcView에서 자동 또는 반자동으로 형성하는 툴을 개발하였다는 것이다. 모델링 구역 내에서 다양한 경계조건(boundary condition)을 반영한 DXF 생성을 위한 툴 개발도 들 수 있다. 아울러 2차원인 ArcView를 이용하여 3차원 수리지질구조를 생성하고, MODFLOW 프로그램의 입출력 자료형태와 동일한 위상구조를 유지한 채 전 후처리하도록 한 것은 이 연구의 가장 큰 성과이다.
본 논문은 효과적인 학습을 제공해주는 교수법으로 알려진 플립러닝을 신호처리 교과목에 적용한 사례에 대한 연구이다. 수업을 위해 사용된 교수학습 모형과 3개년간 시행 사례를 기술하였다. In-class는 비교적 성공적인 수업이라 판단할 수 있으나, Pre-class에서 제공된 동영상 자료의 편성과 학습 여부에 대한 평가는 개선이 필요하였다. 또한, Pre-class와 In-class를 효과적으로 연계하는 방법에 대한 연구가 필요하다고 판단된다.
Seo, Seok-Bae;Kim, Su-Jin;Koo, In-Hoi;Ahn, Sang-Il
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2007년도 Proceedings of ISRS 2007
/
pp.544-547
/
2007
Because data processing systems in recent years are more complicated, main function of the data processing is divided as several sub-functions which are implemented and verified in each subsystem of the data processing system. For the verification of data processing system, many interface tests among subsystems are required and also a lot of simulation systems are demanded. This paper proposes CTHS (Common Test Harness System) for satellite ground segment development which has all of functions for interface test of the data processing system in one PC. Main functions of the CTHS software are data interface, system log generation, and system information display. For the interface test of the data processing system, all of actions of the CTHS are executed by a pre-defined operation scenario which is written by purpose of the data processing system test.
Haein Lee;Hae Sun Jung;Seon Hong Lee;Jang Hyun Kim
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권9호
/
pp.2334-2347
/
2023
Metaverse services generate text data, data of ubiquitous computing, in real-time to analyze user emotions. Analysis of user emotions is an important task in metaverse services. This study aims to classify user sentiments using deep learning and pre-trained language models based on the transformer structure. Previous studies collected data from a single platform, whereas the current study incorporated the review data as "Metaverse" keyword from the YouTube and Google Play Store platforms for general utilization. As a result, the Bidirectional Encoder Representations from Transformers (BERT) and Robustly optimized BERT approach (RoBERTa) models using the soft voting mechanism achieved a highest accuracy of 88.57%. In addition, the area under the curve (AUC) score of the ensemble model comprising RoBERTa, BERT, and A Lite BERT (ALBERT) was 0.9458. The results demonstrate that the ensemble combined with the RoBERTa model exhibits good performance. Therefore, the RoBERTa model can be applied on platforms that provide metaverse services. The findings contribute to the advancement of natural language processing techniques in metaverse services, which are increasingly important in digital platforms and virtual environments. Overall, this study provides empirical evidence that sentiment analysis using deep learning and pre-trained language models is a promising approach to improving user experiences in metaverse services.
RFID 기술의 발전으로 태그 가격이 급속도로 낮아짐에 따라, 더 세밀하게 제품을 관리하기 위해 각 태그가 포장상자에만 부착되는 것이 아니라 개별 제품에 부착된다. 그러나 RFID 데이터를 처리하는 판독기와 미들웨어가 한정된 하드웨어 자원을 가지고 있기 때문에, 초대용량의 태그 데이터를 신속하게 처리하기 위한 방법들이 필수적이다. 본 논문에서는 이러한 요구조건을 효율적으로 충족시키는 새로운 이동 에이전트 기반 분산형 소프트웨어 도구를 설계하고 구현한다. 이 도구는 명시된 데이터 수집 정책을 포함한 이동 에이전트를 다수의 이동식 판독기들로 전송함으로써, 필요한 데이터가 제품의 운송 중 반복적으로 전 처리 될 수 있도록 하는 편리한 환경을 제공한다. 이러한 수행 형태는 목적지에 도착한 후 매우 많은 양의 태그 데이터를 고정식 판독기에서 처리하는 기존 방식에 비해, 판독기와 미들웨어에서 매우 높은 인식률로 태그 데이터를 처리하기 위해 요구되는 소요시간을 상당히 줄일 수 있다.
International Journal of Computer Science & Network Security
/
제21권3호
/
pp.177-184
/
2021
All over the world, people are affected by many chronic diseases and medical practitioners are working hard to find out the symptoms and remedies for the diseases. Many researchers focus on the feature detection of the disease and trying to get a better health recommendation system. It is necessary to detect the features automatically to provide the most relevant solution for the disease. This research gives the framework of Health Recommendation System (HRS) for identification of relevant and non-redundant features in the dataset for prediction and recommendation of diseases. This system consists of three phases such as Pre-processing, Feature Selection and Performance evaluation. It supports for handling of missing and noisy data using the proposed Imputation of missing data and noise detection based Pre-processing algorithm (IMDNDP). The selection of features from the pre-processed dataset is performed by proposed ensemble-based feature selection using an expert's knowledge (EFS-EK). It is very difficult to detect and monitor the diseases manually and also needs the expertise in the field so that process becomes time consuming. Finally, the prediction and recommendation can be done using Support Vector Machine (SVM) and rule-based approaches.
International Journal of Computer Science & Network Security
/
제21권3호
/
pp.206-211
/
2021
Internet users are increasingly invited to express their opinions on various subjects in social networks, e-commerce sites, news sites, forums, etc. Much of this information, which describes feelings, becomes the subject of study in several areas of research such as: "Sensing opinions and analyzing feelings". It is the process of identifying the polarity of the feelings held in the opinions found in the interactions of Internet users on the web and classifying them as positive, negative, or neutral. In this article, we suggest the implementation of a sentiment analysis tool that has the role of detecting the polarity of opinions from people about COVID-19 extracted from social media (tweeter) in the Arabic language and to know the impact of the pre-processing phase on the opinions classification. The results show gaps in this area of research, first of all, the lack of resources when collecting data. Second, Arabic language is more complexes in pre-processing step, especially the dialects in the pre-treatment phase. But ultimately the results obtained are promising.
정보보안을 위한 IDS(Intrusion Detection Systems)는 통상적으로 서명기반(signature based) 침입탐지시스템과 이상기반(anomaly-based) 침입 탐지시스템으로 분류한다. 이 중에서도 네트워크에서 발생하는 트래픽 데이터를 기계학습으로 분석하는 이상기반 IDS 연구가 활발하게 진행됐다. 본 논문에서는 공격 유형 학습에 사용되는 데이터에 존재하는 희소 클래스 문제로 인한 성능 저하를 해결하기 위한 전처리 방안에 대해 연구했다. 희소 클래스(Rare Class)와 준 희소 클래스(Semi Rare Class)를 기준으로 데이터를 재구성하여 기계학습의 분류 성능의 개선에 대하여 실험했다. 재구성된 3종의 데이터 세트에 대하여 Wrapper와 Filter 방식을 연이어 적용하는 하이브리드 특징 선택을 수행한 이후에 Quantile Scaler로 정규화를 처리하여 전처리를 완료한다. 준비된 데이터는 DNN(Deep Neural Network) 모델로 학습한 후 TP(True Positive)와 FN(False Negative)를 기준으로 분류 성능을 평가했다. 이 연구를 통해 3종류의 데이터 세트에서 분류 성능이 모두 개선되는 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.