• Title/Summary/Keyword: DASAN station

Search Result 18, Processing Time 0.027 seconds

Monitoring on the Marine Environment and Phytoplankton of Kongsfjorden, Svalbard, Arctic (북극 스발바드섬 Kongsfjorden의 해양 환경 및 식물플랑크톤 모니터링 연구)

  • Kang, Sung-Ho;Kim, Yea-Dong;Kang, Jae-Shin;Yoo, Kyu-Cheul;Yoon, Ho-Il;Lee, Won-Cheol
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.213-226
    • /
    • 2003
  • Kongsfjorden near Korean Arctic Station, Dasan, is a glacial fjord in the Svalbard archipelago, Arctic that is influenced by both Atlantic and Arctic water masses. During the Arctic field season August 2002, surface temperature, salinity, density, and phytoplankton biomass (chi a) was measured in Kongsfjorden. A total of 15 surface samples were collected for the phytoplankton related measurements. Chl a values ranged from 0.08 to 1.4mg chi a $m^{-3}$ (mean of 0.53mg chl a $m^{-3}$) in the overall surface stations. The highest values of the chi a concentrations (> 1.0mg chi a $m^{-3}$) were found near glacier in the northeastern part of Kongsfjorden. Nanoplanktonic (< $20{\mu}m$) phytoflagellates were important contributors for the increase of the chi a. The nano-sized phytoflagellates accounted for more than 90% of the total chi a biomass in the study area. Surface temperatures and salinities ranged from 2.5 to $7.18^{\circ}C$ (mean of $4.65^{\circ}C$) and from 22.55 to 32.97 psu (mean of 30.16 psu), respectively. The physical factors were not highly correlated with phytoplankton distribution. The character of surface water due to down-fjord wind was highly similar to phytoplankton distribution. Drifting ice, freshwater, and semdiment inputs from large tidal glaciers located in the inner part of Konsfjorden create steep physico- and biogeochemical environmental gradients along the length of this ford. The glacial inputs cause reduced biodiversity biomass and productivity in the pelagic community in the inner fjord. Primary production of benthic and pelagic microalgae is reduced due to the limited light levels in the turbid and mixed inner waters. The magnitude of glacial effects diminishes towards the outer fjord. Kongsfjorden is an important feeding ground fer marine mammals and seabirds. Especially, seabirds play the largest energy intake and also export nutrients for primary production of the marine microalgae. Kongsfjorden has received a lot of research attention as a site for exploring the impacts of climate changes. Dasan Station in Kongsfjorden will be an important Arctic site for monitoring and detecting future environmental changes.

Phylogenetic Analysis of Culturable Arctic Bacteria

  • Lee Yoo Kyung;Kim Hyo Won;Kang Sung-Ho;Lee Hong Kum
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.26-33
    • /
    • 2003
  • We isolated and identifed culturable Arctic bacteria that have inhabited around Korean Arctic Research Station Dasan located at Ny-Alsund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. The pure colonies were inoculated into nutrient liquid media, genomic DNA was extracted, and phylogenetic analysis was performed on the basis of 16S rDNA sequences. Out of total 227 strains, 198 strains were overlapped or unidentified, and 43 bacteria were finally identified: 31 strains belonged to Pseudomonas, 7 strains Arthrobacter, two Flavobacterium sp., an Achromobacter sp., a Pedobacter sp., and a Psychrobacter sp. For isolation of diverse bacteria, we need more effective transport method than 3M petri-films, which were used for convenience of transportation that was restricted by volume. We also need to use other culture media than nutrient media. We expect these Arctic bacteria can be used for screening to develop new antibiotics or industrial enzymes that are active at low temperature.

  • PDF

Axenic purification and cultivation of an Arctic cyanobacterium, Nodularia spumigena KNUA005, with cold tolerance potential for sustainable production of algae-based biofuel

  • Hong, Ji-Won;Choi, Han-Gu;Kang, Sung-Ho;Yoon, Ho-Sung
    • ALGAE
    • /
    • v.25 no.2
    • /
    • pp.99-104
    • /
    • 2010
  • A psychrotolerant cyanobacterium, Nodularia spumigena KNUA005, was isolated from a cyanobacterial bloom sample collected near Dasan Station in Ny-${\AA}lesund$, Svalbard Islands during the Arctic summer season. To generate an axenic culture, the isolate was subjected to three purification steps: centrifugation, antibiotic treatment and streaking. The broad antibacterial spectrum of imipenem killed a wide range of heterotrophic bacteria, while the cyanobacterium was capable of enduring both antibiotics, the remaining contaminants that survived after treatment with imipenem were eliminated by the application of an aminoglycoside antibiotic, kanamycin. Physical separation by centrifugation and streaking techniques also aided axenic culture production. According to the cold-tolerance test, this mat-forming cyanobacterium was able to proliferate at low temperatures ranging between 15 and $20^{\circ}C$ which indicates the presence of cold-tolerance related genes in N. spumigena KNUA005. This suggests the possibility of incorporating cold-resistance genes into indigenous cyanobacterial strains for the consistent production of algae-based biofuel during the low-temperature seasons. Therefore, it is needed to determine the cold-tolerance mechanisms in the Arctic cyanobacterium in the next research stage.

Memorial Design for Relocation Site of Steam Locomotive in Jangdan Station on Kyong-Eui Railway (경의선 장단역 증기기관차 이전지 기념공간 설계)

  • Park, No-Chun;An, Seung-Hong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.51-61
    • /
    • 2012
  • Kyong-Eui Railway used to be one of the major cross-country railways connecting Busan and Shineuiju. Being the central axis of logistics and transportation in Korea, it also signifies a symbolic meaning of the people's desire for the unification of divided Korean peninsula. A steam locomotive that had stopped in Jangdan Station was bombed out during the Korean War. The locomotive has been neglected and covered with rust in DMZ over a half century, and now is becoming a historic reminder of divided Korea. The initial design approach was based on the three main perspectives of the relocation plan of the steam locomotive in Jangdan Station which is designated as the registered cultural asset no. 78: historical significance, role of a monumental space, and influence on and from the local culture and tourism. Three design subjects were especially highlighted which would represent the identity of the cultural asset, the stream locomotive. First, a vertical watching deck was installed to provide various view points toward the locomotive while ensuring the security of visitors as well as the cultural asset. Second, the Dokgae bride area has good design potentials being on the railway. However, the site is too narrow. Thus, a new ramp and a stairway were placed responding to the existing topography so that the pedestrian environment could be secured last, to respect the local context where the locomotive was originally located, mulberry trees in the locomotive were transplanted as well. Flowering plants were planted around the display area for better ventilation to minimize the negative impact on the locomotive.

Cellular growth and fatty acid content of Arctic chlamydomonadalean

  • Jung, Woongsic;Kim, Eun Jae;Lim, Suyoun;Sim, Hyunji;Han, Se Jong;Kim, Sanghee;Kang, Sung-Ho;Choi, Han-Gu
    • ALGAE
    • /
    • v.31 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • Arctic microalgae thrive and support primary production in extremely cold environment. Three Arctic green microalgal strains collected from freshwater near Dasan Station in Ny-Alesund, Svalbard, Arctic, were analyzed to evaluate the optimal growth conditions and contents of fatty acids. The optimal growth temperature for KNF0022, KNF0024, and KNF0032 was between 4 and 8℃. Among the three microalgal strains, KNF0032 showed the maximal cell number of 1.6 × 107 cells mL-1 at 4℃. The contents of fatty acids in microalgae biomass of KNF0022, KNF0024, and KNF0032 cultured for 75 days were 37.34, 73.25, and 144.35 mg g-1 dry cell weight, respectively. The common fatty acid methyl esters (FAMEs) analyzed from Arctic green microalgae consisted of palmitic acid methyl ester (C16:0), 5,8,11-heptadecatrienoic acid methyl ester (C17:3), oleic acid methyl ester (C18:1), linoleic acid methyl ester (C18:2), and α-linolenic acid methyl ester (C18:3). KNF0022 had high levels of heptadecanoic acid methyl ester (26.58%) and heptadecatrienoic acid methyl ester (22.17% of the total FAMEs). In KNF0024 and KNF0032, more than 72.09% of the total FAMEs consisted of mono- and polyunsaturated fatty acids. Oleic acid methyl ester from KNF0032 was detected at a high level of 20.13% of the FAMEs. Arctic freshwater microalgae are able to increase the levels of polyunsaturated fatty acids under a wide range of growth temperatures and can also be used to produce valuable industrial materials.

High Resolution Ocean Color Products Estimation in Fjord of Svalbard, Arctic Sea using Landsat-8 OLI (Landsat-8 OLI를 이용한 북극해 스발바드 피요르드의 고해상도 Ocean Color Product 산출)

  • Kim, Sang-Il;Kim, Hyun-Cheol;Hyun, Chang-Uk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.809-816
    • /
    • 2014
  • Ocean Color products have been used to understand marine ecosystem. In high latitude region, ice melting optically influences the ocean color products. In this study, we assessed optical properties in fjord around Svalbard Arctic sea, and estimated distribution of chlorophyll-a and suspended sediment by using high resolution satellite data, Landsat-8 Operational Land Imager (OLI). To estimate chlorophyll-a and suspended sediment concentrations, various regression models were tested with different band ratio. The regression models were not shown high correlation because of temporal difference between satellite data and in-situ data. However, model-derived distribution of ocean color products from OLI showed a possibility that fjord and coastal areas around Arctic Sea can be monitored with high resolution satellite data. To understand climate change pattern around Arctic Sea, we need to understand ice meting influences on marine ecosystem change. Results of this study will be used to high resolution monitoring of ice melting and its influences on the marine ecosystem change at high latitude. KOPRI (Korea Polar Research Institute) has been operated the Dasan station on Svalbard since 2002, and study was conducted using Arctic station.

Ionospheric and Upper Atmospheric Observations in Korea (국내 우주환경 자료 보유 현황: 전리권/고층대기)

  • Lee, Changsup;Lee, Woo Kyoung;Division of Solar and Space Environment of KSSS,
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.199-216
    • /
    • 2021
  • In 2020, the solar and space environment division at the Korea Space Science Society surveyed the status of data archives in solar physics, magnetosphere, and ionosphere/upper atmosphere in Korea to promote broader utilization of the data and research collaboration. The survey includes ground- and satellite-based instruments and developing models by research institutes and universities in Korea. Based on the survey results, this study reports the status of the ground-based instruments, data products in the ionosphere and upper atmosphere, and documentation of them. The ground-based instruments operated by the Korea Polar Research Institute and Korea Astronomy and Space Science Institute include ionosonde, Fabry-Perot interferometer in Arctic Dasan stations, Antarctic King Sejong/Jang Bogo stations, and an all-sky camera, VHF radar in Korea. We also provide information on total electron content and scintillation observations derived from the Global Navigation Satellite System (GNSS) station networks in Korea. All data are available via the webpage, FTP, or by request. Information on ionospheric data and models is available at http://ksss.or.kr. We hope that this report will increase data accessibility and encourage the research community to engage in the establishment of a new Space Science Data Ecosystem, which supports archiving, searching, analyzing, and sharing the data with diverse communities, including educators, industries, and the public as wells as the research scientist.

Development of new artificial neural network optimizer to improve water quality index prediction performance (수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발)

  • Ryu, Yong Min;Kim, Young Nam;Lee, Dae Won;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Predicting water quality of rivers and reservoirs is necessary for the management of water resources. Artificial Neural Networks (ANNs) have been used in many studies to predict water quality with high accuracy. Previous studies have used Gradient Descent (GD)-based optimizers as an optimizer, an operator of ANN that searches parameters. However, GD-based optimizers have the disadvantages of the possibility of local optimal convergence and absence of a solution storage and comparison structure. This study developed improved optimizers to overcome the disadvantages of GD-based optimizers. Proposed optimizers are optimizers that combine adaptive moments (Adam) and Nesterov-accelerated adaptive moments (Nadam), which have low learning errors among GD-based optimizers, with Harmony Search (HS) or Novel Self-adaptive Harmony Search (NSHS). To evaluate the performance of Long Short-Term Memory (LSTM) using improved optimizers, the water quality data from the Dasan water quality monitoring station were used for training and prediction. Comparing the learning results, Mean Squared Error (MSE) of LSTM using Nadam combined with NSHS (NadamNSHS) was the lowest at 0.002921. In addition, the prediction rankings according to MSE and R2 for the four water quality indices for each optimizer were compared. Comparing the average of ranking for each optimizer, it was confirmed that LSTM using NadamNSHS was the highest at 2.25.