• Title/Summary/Keyword: DAR(1)

Search Result 389, Processing Time 0.022 seconds

Utilization of Ground Control Points using LiDAR Intensity and DSM (LiDAR 반사강도와 DSM을 이용한 지상기준점 활용방안)

  • Lim, Sae-Bom;Kim, Jong-Mun;Shin, Sang-Cheol;Kwon, Chan-O
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.37-45
    • /
    • 2010
  • AT(Aerial Triangulation) is the essential procedure for creating orthophoto and transforming coordinates on the photographs into the real world coordinates utilizing GCPs (Ground Control Point) which is obtained by field survey and the external orientation factors from GPS/INS as a reference coordinates. In this procedure, all of the GCPs can be collected from field survey using GPS and Total Station, or obtained from digital maps. Collecting GCPs by field survey is accurate than GCPs from digital maps; however, lots of manpower should be put into the collecting procedure, and time and cost as well. On the other hand, in the case of obtaining GCPs from digital maps, it is very difficult to secure the required accuracy because almost things at each stage in the collecting procedure should rely on the subjective judgement of the performer. In this study, the results from three methods have been compared for the accuracy assessment in order to know if the results of each case is within the allowance error: for the perceivable objects such as road boarder, speed bumps, constructions etc., 1) GCPs selection utilizing the unique LiDAR intensity value reflected from such objects, 2) using LiDAR DSM and 3) GCPs from field survey. And also, AT and error analysis have been carried out w ith GCPs obtained by each case.

Mapping Man-Made Levee Line Using LiDAR Data and Aerial Orthoimage (라이다 데이터와 항공 정사영상을 활용한 인공 제방선 지도화)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Chung, Youn-In;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.84-93
    • /
    • 2011
  • Levee line mapping is critical to the protection of environments in river zones, the prevention of river flood and the development of river zones. Use of the remote sensing data such as LiDAR and aerial orthoimage is efficient for river mapping due to their accessibility and higher accuracy in horizontal and vertical direction. Airborne laser scanning (LiDAR) has been used for river zone mapping due to its ability to penetrate shallow water and its high vertical accuracy. Use of image source is also efficient for extraction of features by analysis of its image source. Therefore, aerial orthoimage also have been used for river zone mapping tasks due to its image source and its higher accuracy in horizontal direction. Due to these advantages, in this paper, research on three dimensional levee line mapping is implemented using LiDAR and aerial orthoimage separately. Accuracy measurement is implemented for both extracted lines generated by each data using the ground truths and statistical comparison is implemented between two measurement results. Statistical results show that the generated 3D levee line using LiDAR data has higher accuracy than the generated 3D levee line using aerial orthoimage in horizontal direction and vertical direction.

Topographical Changes in Torrential Stream After Dredging in Erosion Control Dam - Using Terrestrial LiDAR Data - (사방댐 준설이 계류의 지형변화에 미치는 영향 - 지상 LiDAR 자료를 이용하여 -)

  • Seo, Junpyo;Woo, Choongshik;Lee, Changwoo;Kim, Kyongha;Lee, HeonHo
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.392-401
    • /
    • 2014
  • This research was carried out to understand the impact of mountainous torrent on topographical change of slope and sediment volume within a deposit line by dredging of soil erosion control dam. Terrestrial LiDAR surveys were conducted at dredged and non-dredged sites. Terrestrial LiDAR has an advantage on detecting topographical changes easily without demanding workmanship and technical skill for users. The distribution of erodible slope ($20^{\circ}-40^{\circ}$) was higher in non-dredged site than that of dredged site. However, the distribution was higher in dredged site than that of non-dredged site after rainy season. Erosion and deposition appeared regularly in a dredged site, but those occurred irregularly in the non-dredged site. The inflow of soil per square meter was 1.7 times higher in dredged site than that of non-dredged site after rainy season. The difference of rainfall in each site did not affect to soil erosion. The distribution of erodible slope was increased in dredged site than that of non-dredged site after rainy season due to inflow of soil from upper stream caused by dredging.

Comparison of Accuracy and Characteristics of Digital Elevation Model by MMS and UAV (MMS와 UAV에 의한 수치표고모델의 정확도 및 특성 비교)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.13-18
    • /
    • 2019
  • The DEM(Digital Elevation Model) is a three-dimensional spatial information that stores the height of the terrain as a numerical value. This means the elevation of the terrain not including the vegetation and the artifacts. The DEM is used in various fields, such as 3D visualization of the terrain, slope, and incense analysis, and calculation of the quantity of construction work. Recently, many studies related to the construction of 3D geospatial information have been conducted, but research related to DEM generation is insufficient. Therefore, in this study, a DEM was constructed using a MMS (Mobile Mapping System), UAV image, and UAV LiDAR (Light Detection And Ranging), and the accuracy evaluation of each result was performed. As a result, the accuracy of the DEM generated by MMS and UAV LiDAR was within ± 4.1cm, and the accuracy of the DEM using the UAV image was ± 8.5cm. The characteristics of MMS, UAV image, and UAV LiDAR are presented through a comparison of data processing and results. The DEM construction using MMS and UAV can be applied to various fields, such as an analysis and visualization of the terrain, collection of basic data for construction work, and service using spatial information. Moreover, the efficiency of the related work can be improved greatly.

A Study on Extraction of Croplands Located nearby Coastal Areas Using High-Resolution Satellite Imagery and LiDAR Data (고해상도 위성영상과 LiDAR 자료를 활용한 해안지역에 인접한 농경지 추출에 관한 연구)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.170-181
    • /
    • 2015
  • A research on extracting croplands located nearby coastal areas using the spatial information data sets is the important task for managing the agricultural products in coastal areas. This research aims to extract the various croplands(croplands on mountains and croplands on plain areas) located nearby coastal areas using the KOMPSAT-2 imagery, the high-resolution satellite imagery, and the airborne topographic LiDAR(Light Detection And Ranging) data acquired in coastal areas of Uljin, Korea. Firstly, the NDVI(Normalized Difference Vegetation Index) imagery is generated from the KOMPSAT-2 imagery, and the vegetation areas are extracted from the NDVI imagery by using the appropriate threshold. Then, the DSM(Digital Surface Model) and DEM(Digital Elevation Model) are generated from the LiDAR data by using interpolation method, and the CHM(Canopy Height Model) is generated using the differences of the pixel values of the DSM and DEM. Then the plain areas are extracted from the CHM by using the appropriate threshold. The low slope areas are also extracted from the slope map generated using the pixel values of the DEM. Finally, the areas of intersection of the vegetation areas, the plain areas and the low slope areas are extracted with the areas higher than the threshold and they are defined as the croplands located nearby coastal areas. The statistical results show that 85% of the croplands on plain areas and 15% of the croplands on mountains located nearby coastal areas are extracted by using the proposed methodology.

Analysis of Settlement Characteristics of Block Pavement in Port Through Field Tests (현장시험을 통한 항만 구역 내 블록 포장의 침하 특성 분석)

  • Ha, Yong-Soo;Kim, Yun-Tae;Oh, Myounghak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.203-214
    • /
    • 2024
  • Ports often suffer pavement damage due to soft ground and heavy equipment operations, leading to issues such as differential settlement and cracks. In this study, we developed port concrete blocks and applied them to a port in two configurations to figure out settlement characteristics. Falling weight deflectometer (FWD) tests on asphalt pavement and block pavements were conducted to figure out deflection and bearing capacity. The block pavement with the cement treated base showed improved bearing capacity with the port operation since lower settlements were detected than asphalt pavement. In the cement treated base, the relative deflection ratio to asphalt concrete pavement was less than 1, indicating enhanced bearing capacity. LiDAR measurements identified multiple settlements in the crushed-stone base due to surface loads after construction. Both relative deflection ratio and LiDAR measurements suggested that block pavement can be widely applied to various port sites with its applicability and bearing capacity of cement-treated base.

Occupational Exposure to Blood and Body Fluids Among Health Care Professionals in Bahir Dar Town, Northwest Ethiopia

  • Yenesew, Muluken Azage;Fekadu, Gedefaw Abeje
    • Safety and Health at Work
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 2014
  • Background: Health care professionals (HCPs) are at high risk of contracting blood-borne infections due to their occupational exposure to blood and body fluids (BBFs). The incidence of these infections among HCPs are higher in low income countries such as Ethiopia. The aim of the study was to investigate the extent of occupational exposure to BBFs and its associated factors among HCPs in Bahir Dar town, Ethiopia. Methods: A cross-sectional study was used from October 1, 2012 to October 30, 2012. Three hundred and seventeen HCPs were included in the study using a simple random sampling technique. The data were collected using a structured questionnaire and analyzed using SPSS version 16. Bivariate and multivariate analyses were used to identify the factors related to exposure to BBFs. Results: Two hundred and nine (65.9%) HCPs were exposed to BBFs in the past year, of which 29.0% were needlestick injuries. Work experience [adjusted odds ratio (AOR) 4.13, 95% confidence interval (CI) 1.56-10.91], inconsistent use of gloves (AOR 1.98, 95% CI 1.04-3.43), and not complying with standard precautions (AOR 1.80, 95% CI 1.00-3.22) were the factors associated with occupational exposure to BBFs. Conclusion: A high proportion of HCPs was exposed to BBFs in this study. Occupational exposure to BBFs was determined by the use of gloves and not complying with standard precautions. Ensuring the availability of gloves, training about standard precautions, and motivation of HCPs to implement standard precautions should be emphasized to avoid such exposures.

Synthesis, Characterization and in vitro Antibacterial Studies on Mixed Ligand Complexes of Iron(III) Based on 1,10-phenanthroline

  • Tigineh, Getinet Tamiru;Sitotaw, Getu;Workie, Amogne;Abebe, Atakilt
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.203-208
    • /
    • 2021
  • As part of our attempt to discover novel active compounds against multi-drug resistant pathogens, we hereby report two new complexes of iron(III) with formulae: [Fe(L1)2(H2O)2]Cl3 and [Fe(L1)2(L2)(H2O)]Cl2 where L1 = 1,10-phenanthroline (C12H8N2) and L2 = guanide (C5H4N5O-). The synthesized complexes were characterized using spectroscopic analysis (ESI-MS, ICP-OES, FT-IR, and UV-Vis), cyclic voltammetry, CHN analysis, gravimetric chloride determination, melting point determination, and conductance measurement. Octahedral geometries are assigned to both complexes. In vitro antibacterial activity was tested on two Gram-positive (Staphylococcus aureus, Streptococcus epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria using the disc diffusion method. The complexes demonstrated appreciable activity against these pathogens. Interestingly, the [Fe(L1)2(L2)(H2O)]Cl2 complex manifested a higher degree of inhibition against the drug-resistant Gram-negative bacteria than the commercially available drug, namely erythromycin.

Semi-Supervised Domain Adaptation on LiDAR 3D Object Detection with Self-Training and Knowledge Distillation (자가학습과 지식증류 방법을 활용한 LiDAR 3차원 물체 탐지에서의 준지도 도메인 적응)

  • Jungwan Woo;Jaeyeul Kim;Sunghoon Im
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.346-351
    • /
    • 2023
  • With the release of numerous open driving datasets, the demand for domain adaptation in perception tasks has increased, particularly when transferring knowledge from rich datasets to novel domains. However, it is difficult to solve the change 1) in the sensor domain caused by heterogeneous LiDAR sensors and 2) in the environmental domain caused by different environmental factors. We overcome domain differences in the semi-supervised setting with 3-stage model parameter training. First, we pre-train the model with the source dataset with object scaling based on statistics of the object size. Then we fine-tine the partially frozen model weights with copy-and-paste augmentation. The 3D points in the box labels are copied from one scene and pasted to the other scenes. Finally, we use the knowledge distillation method to update the student network with a moving average from the teacher network along with a self-training method with pseudo labels. Test-Time Augmentation with varying z values is employed to predict the final results. Our method achieved 3rd place in ECCV 2022 workshop on the 3D Perception for Autonomous Driving challenge.

Implementation and validation of a motion compensation algorithm for Floating LiDAR System (부유식 라이다 시스템 모션 보정 알고리즘의 구현 및 검증)

  • Miho Park;Hyungyu Kim;Kyeongrok Mun;Chihoon Hur
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.87-97
    • /
    • 2023
  • Due to the limitations of onshore wind power, the wind power industry is currently transitioning to offshore wind power. There has been active research on the development of a floating LiDAR system (FLS) that is easy to install at a low cost. The Carbon Trust published a commercialization roadmap for FLS in 2013, and an updated version was released in 2018, taking into account industry experience. The roadmap divides the development maturity of FLS into three stages: Stage 1 (prototype), Stage 2 (pre-commercialization), and Stage 3 (commercialization), each of which requires availability and accuracy assessment. The results must meet the requirements of the Key Performance Index (KPI) for each stage. Therefore, when developing FLS, the motion compensation algorithm of the FLS is essential because the LiDAR can produce incorrect measurements of wind speed and direction due to the six degrees of freedom in motion. In this study, we implemented the FLS motion compensation algorithm developed by Nassif, F.B. et al. and validated it using data provided by Fraunhofer. In conclusion, the results showed that the determination coefficients of wind speed and wind direction were improved compared to those obtained from the met mast.