• Title/Summary/Keyword: DAMGO

Search Result 13, Processing Time 0.024 seconds

DAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord

  • Cho, Pyung Sun;Lee, Han Kyu;Lee, Sang Hoon;Im, Jay Zoon;Jung, Sung Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.525-531
    • /
    • 2016
  • The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying $K^+$ current. In this study, we examined whether a ${\mu}$-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain $K^+$ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the $K^+$ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying $K^+$ channel) related acid-sensitive $K^+$ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced $K^+$ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain $K^+$ channel (TASK1 and 3) in addition to inwardly rectifying $K^+$ channel.

DAMGO, a ${\mu}-Opioid$ Agonist and Cholecystokinin-Octapeptide Have Dual Modulatory Effects on Capsaicin-Activated Current in Rat Dorsal Root Ganglion Neurons

  • Eun, Su-Yong;Kim, Ji-Mok;Lee, Ji-Hye;Jung, Sung-Jun;Park, Joo-Min;Park, Yun-Kyung;Kim, Dong-Kwan;Kim, Sang-Jeong;Kwak, Ji-Yeon;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.71-78
    • /
    • 2001
  • Capsaicin, a pungent ingredient of hot pepper, elicits an intense burning pain when applied cutaneously and intradermally. Activation of capsaicin-gated channel in C-type dorsal root ganglion (DRG) neurons produces nonselective cationic currents. Although electrophysiological and biochemical properties of capsaicin-activated current $(I_{CAP})$ were studied, the regulatory mechanism and intracellular signaling pathway are still unclear. In the present study, we investigated the modulations of $I_{CAP}$ by DAMGO $({\mu}-opioid\;agonist)$ and cholecystokinin octapeptide (CCK-8). In 18 out of 86 cells, the amplitude of $I_{CAP}$ was significantly increased by DAMGO and completely reversed after washout, while $I_{CAP}$ was decreased by DAMGO in 25 cells. In 43 cells, DAMGO had no effect on $I_{CAP}$. Mean action potential duration was significantly different between 'increased-by-DAMGO' group and 'decreased-by-DAMGO' group. Mean amplitudes of $I_H$ were not significantly different between both groups. CCK-8 reversibly enhanced the amplitude of $I_{CAP}$ (5/13). DAMGO also increased $I_{CAP}$ amplitude significantly in the same cells. The amplitude of $I_{CAP}$ was increased in additive manner by combined applications of DAMGO and CCK-8 in these cells. These results suggest that DAMGO and CCK-8 can either increase or decrease $I_{CAP}$ presumably depending on the subtypes of DRG cells and classified by electrophysiological properties.

  • PDF

Spinal orexin A attenuates opioid-induced mechanical hypersensitivity in the rat

  • Youn, Dong-ho;Jun, Jiyeon;Kim, Tae Wan;Park, Kibeom
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.433-439
    • /
    • 2022
  • Background: Repeated administration of opioid analgesics for pain treatment can produce paradoxical hyperalgesia via peripheral and/or central mechanisms. Thus, this study investigated whether spinally (centrally) administered orexin A attenuates opioid-induced hyperalgesia (OIH). Methods: [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), a selective µ-opioid receptor agonist, was used to induce mechanical hypersensitivity and was administered intradermally (4 times, 1-hour intervals) on the rat hind paw dorsum. To determine whether post- or pretreatments with spinal orexin A, dynorphin A, and anti-dynorphin A were effective in OIH, the drugs were injected through an intrathecal catheter whose tip was positioned dorsally at the L3 segment of the spinal cord (5 ㎍ for all). Mechanical hypersensitivity was assessed using von Frey monofilaments. Results: Repeated intradermal injections of DAMGO resulted in mechanical hypersensitivity in rats, lasting more than 8 days. Although the first intrathecal treatment of orexin A on the 6th day after DAMGO exposure did not show any significant effect on the mechanical threshold, the second (on the 8th day) significantly attenuated the DAMGO-induced mechanical hypersensitivity, which disappeared when the type 1 orexin receptor (OX1R) was blocked. However, intrathecal administration of dynorphin or an anti-dynorphin antibody (dynorphin antagonists) had no effect on DAMGO-induced hypersensitivity. Lastly, pretreatment with orexin A, dynorphin, or anti-dynorphin did not prevent DAMGO-induced mechanical hypersensitivity. Conclusions: Spinal orexin A attenuates mechanical hyperalgesia induced by repetitive intradermal injections of DAMGO through OX1R. These data suggest that OIH can be potentially treated by activating the orexin A-OX1R pathway in the spinal dorsal horn.

The Inhibitory Effect of Opioid on the Hyperpolarization-Activated Cation Currents in Rat Substantia Gelatinosa Neurons

  • Seol, Geun-Hee;Kim, Jun;Cho, Sun-Hee;Kim, Won-Ki;Kim, Jong-Whan;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.373-380
    • /
    • 2001
  • The action of opioid on the hyperpolarization-activated cation current $(I_h)$ in substantia gelatinosa neurons were investigated by using whole-cell voltage-clamp recording in rat spinal brain slices. Hyperpolarizing voltage steps revealed slowly activating currents in a subgroup of neurons. The half-maximal activation and the reversal potential of the current were compatible to neuronal $I_h.$ DAMGO $(1\;{\mu}M),$ a selective- opioid agonist, reduced the amplitude of $I_h$ reversibly. This reduction was dose-dependent and was blocked by CTOP $(2\;{\mu}M),$ a selective ${\mu}-opioid$ antagonist. DAMGO shifted the voltage dependence of activation to more hyperpolarized potential. Cesium (1 mM) or ZD 7288 $(100\;{\mu}M)$ blocked $I_h$ and the currents inhibited by cesium, ZD 7288 and DAMGO shared a similar time and voltage dependence. These results suggest that activation of ${\mu}-opioid$ receptor by DAMGO can inhibit $I_h$ in a subgroup of rat substantia gelatinosa neurons.

  • PDF

The effect of μ-opioid receptor activation on GABAergic neurons in the spinal dorsal horn

  • Kim, Yoo Rim;Shim, Hyun Geun;Kim, Chang-Eop;Kim, Sang Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.419-425
    • /
    • 2018
  • The superficial dorsal horn of the spinal cord plays an important role in pain transmission and opioid activity. Several studies have demonstrated that opioids modulate pain transmission, and the activation of ${\mu}$-opioid receptors (MORs) by opioids contributes to analgesic effects in the spinal cord. However, the effect of the activation of MORs on GABAergic interneurons and the contribution to the analgesic effect are much less clear. In this study, using transgenic mice, which allow the identification of GABAergic interneurons, we investigated how the activation of MORs affects the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive afferent and GABAergic interneurons. We found that a selective ${\mu}$-opioid agonist, [$D-Ala^2$, $NMe-Phe^4$, Gly-ol]-enkephanlin (DAMGO), induced an outward current mediated by $K^+$ channels in GABAergic interneurons. In addition, DAMGO reduced the amplitude of evoked excitatory postsynaptic currents (EPSCs) of GABAergic interneurons which receive monosynaptic inputs from primary nociceptive C fibers. Taken together, we found that DAMGO reduced the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive C fibers and GABAergic interneurons. These results suggest one possibility that suppression of GABAergic interneurons by DMAGO may reduce the inhibition on secondary GABAergic interneurons, which increase the inhibition of the secondary GABAergic interneurons to excitatory neurons in the spinal dorsal horn. In this circumstance, the sum of excitation of the entire spinal network will control the pain transmission.

Effects of Whole Body Irradiation on Morphine, DAMGO, DPDPE, U50,488H and $\beta$-endorphin-Induced Antinociception

  • Park, Tae-Won;Kim, Jin-Kyu;Jeong, Jae-Soo;Kim, Tae-Wan;Cho, Young-Kyung;Kim, Kyung-Nyun;Chung, Ki-Myung
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Opioid receptors have been pharmacologically classified as ${\mu}$, ${\delta}$, ${\kappa}$ and ${\varepsilon}$. We have recently reported that the antinociceptive effect of morphine (a ${\mu}$-opioid receptor agonist), but not that of ${\beta}$-endorphin (a novel ${\mu}/{\varepsilon}$-opioid receptor agonist), is attenuated by whole body irradiation (WBI). It is unclear at present whether WBI has differential effects on the antinociceptive effects of ${\mu}-$, ${\delta}-$, ${\kappa}-$ and ${\varepsilon}$-opioid receptor agonists. In our current experiments, male ICR mice were exposed to WBI (5Gy) from a $^{60}Co$ gamma-source and the antinociceptive effects of opioid receptor agonists were assessed two hours later using the hot water ($52^{\circ}C$) tail-immersion test. Morphine and $D-Ala^2$, $N-Me-Phe^4$, Gly-olenkephalin (DAMGO), [$D-Pen^2-D-Pen^5$] enkephalin (DPDPE), trans-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide (U50,488H), and ${\beta}$-endorphin were tested as agonists for ${\mu}$, ${\delta}$, ${\kappa}$, and ${\varepsilon}$-opioid receptors, respectively. WBI significantly attenuated the antinociceptive effects of morphine and DAMGO, but increased those of ${\beta}$-endorphin. The antinociceptive effects of DPDPE and U50,488H were not affected by WBI. In addition, to more preciously understand the differential effects of WBI on ${\mu}-$ and ${\varepsilon}$-opioid receptor agonists, we assessed pretreatment effects of ${\beta}$-funaltrexamine (${\beta}$-FNA, a ${\mu}$-opioid receptor antagonist) or ${\beta}$-$endorphin_{1-27}$ (${\beta}$-$EP_{1-27}$, an ${\varepsilon}$-opioid receptor antagonist), and found that pretreatment with ${\beta}$-FNA significantly attenuated the antinociceptive effects of morphine and ${\beta}$-endorphin by WBI. ${\beta}$-$EP_{1-27}$ significantly reversed the attenuation of morphine by WBI and significantly attenuated the increased effects of ${\beta}$-endorphin by WBI. The results demonstrate differential sensitivities of opioid receptors to WBI, especially for ${\mu}-$ and ${\varepsilon}$-opioid receptors.

LIGAND BINDING CHARACTERISTICS OF $K_2$- OPIOID RECEPTOR AND ITS ROLE IN REGULATION OF 〔$^3$H〕HISTAMINE RELEASE IN FRONTAL CORTEX OF THE RAT

  • Kim, Kee-Won-;Park, Kyu--Cho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.305-305
    • /
    • 1994
  • It has been shown that there are several subtypes of $\kappa$ opioid receptor, We have evaluated the properties of non-${\mu}$, non-$\delta$ binding of 〔$^3$H〕DIP, a nonselective opioid antagonist, in rat cortex membranes. Binding to ${\mu}$ and $\delta$ sites was inhibited by the use of an excess of competing selective agonists (DAMGO, DPDPE) for these sites. (-)Ethylketocyclazocine(EKC) inhibited 〔$^3$H〕DIP binding with Ki. of 70 nM. However, arylacetamides (U69593 and U50488H) gave little inhibition. Also, we have examined the opioid modulation of K$\^$+/(30 mM)-induced histamine release in rat frontal cortex slices labeled with 1-〔$^3$H〕histidine. The 〔$^3$H〕histamine release from cortex slices was inhibited by EKC, a $\kappa$$_1$-and $\kappa$$_2$-agonist, in a concentration-dependent manner(10 to 10,000 nM). The IC$\sub$50/ of EKC was 107 ${\pm}$ 6 nM. However, the $\delta$ receptor selective agonists, DPDPE and deltorphine II, ${\mu}$ receptor agonists, DAMGO and TAPS, $\kappa$$_1$-agonists, U69593 and U50488H, and $\varepsilon$-agonist, ${\beta}$-endorphin, did not inhibit histamine release even in micromoiar dose, indicating that ${\mu}$, $\delta$ or $\kappa$$_1$ receptors are not involved. The concentration-response curve of EKC was shifted to right in the presence of naloxone (300 nM), a ${\mu}$ preferential antagonist, norbinaltorphimine(300 nM), a $\kappa$$_1$ preferential antagonist and bremazocine(1 nM), a $\kappa$$_1$-agonist and $\kappa$$_2$-antagonist. These results suggest that $\kappa$$_2$ opioid receptor regulates histamine release in the frontal cortex of the rat.

  • PDF

Dual Effect of Dynorphin A on Single-Unit Spike Potentials in Rat Trigeminal Nucleus

  • Lee, Keun-Mi;Han, Hee-Seok;Jang, Jae-Hee;Ahn, Doug-Kuk;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.213-221
    • /
    • 2001
  • The amygdala is known as a site for inducing analgesia, but its action on the trigeminal nucleus has not been known well. Little information is available on the effect of dynorphin on NMDA receptor-mediated electrophysiological events in the trigeminal nucleus. The purpose of this study was to investigate the changes in the single neuron spikes at the trigeminal nucleus caused by the amygdala and the action of dynorphin on the trigeminal nucleus. In the present study, extracellular single unit recordings were made in the dorsal horn of the medulla (trigeminal nucleus caudalis) and the effects of microiontophoretically applied compounds were examined. When [D-Ala2, N-Me-Phe4, Glys5-ol]enkephalin (DAMGO, 10-25 mM), a ${\mu}-opioid$ receptor agonist, was infused into the amygdala, the number of NMDA-evoked spikes at the trigeminal nucleus decreased. However, the application of naloxone into the trigeminal nucleus while DAMGO being infused into the amygdala increased the number of spikes. Low dose (1 mM) of dynorphin in the trigeminal nucleus produced a significant decrease in NMDA-evoked spikes of the trigeminal nucleus but the NMDA-evoked responses were facilitated by a high dose (5 mM) of dynorphin. After the ${\kappa}$ receptors were blocked with naloxone, dynorphin induced hyperalgesia. After the NMDA receptors were blocked with AP5, dynorphin induced analgesia. In conclusion, dynorphin A exerted dose-dependent dual effects (increased & decreased spike activity) on NMDA-evoked spikes in the trigeminal nucleus. The inhibitory effect of the dynorphin at a low concentration was due to the activation of ${\kappa}$ receptors and the excitatory effect at a high concentration was due to activation of NMDA receptors in the trigeminal neurons.

  • PDF

Regulation of Histamine Release by Kappa Opioid Receptor in Rat Cortical Slices (백서 대뇌피질에서 Opioid Kappa수용체의 Histamine 유리조절기능에 관한 연구)

  • Kim, Kee-Won;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • It has been shown that there are several subtypes of ${\kappa}$ opioid receptor. We examined ligand binding profiles and the effects of various opioid agonists on high potassium-stimulated release of $[^3H]$ histamine. We have evaluated the properties of $non-{\mu},\;non-{\delta},$ binding of $[^3H]\;DIP\;([^3H]\;diprenorphine),$ anonselective opioid antagonist, in rat cortex membranes. Binding $to\;{\mu}\;and\;{\delta}$ sites was inhibited by the use of an excess of competing selective agonists (DAMGO, DPDPE) for these sites. (-) Ethylketocyclazocine (EKC), DIP and bremazocine inhibited $[^3H]$ DIP binding. However, arylacetamides (U69593 and U50488H) gave little inhibition Replacement of sodium by NMDG and the addition of guanine nucleotide influenced the inhibitory potency of (-) EKC, an agonist for {\kappa}_1-and-{\kappa}_2-binding site, but not of bremazocine. This result suggests that bremazocine can be an antagonist at this binding site. Also, we have examined the opioid modulation of $K^+(30mM)-induced\;[^3H]\;histamine$ release in rat frontal cortex slices labeled with $1-[^3H]\;histidine$. The $[^3H]\; histamine$ release from cortex slices was inhibited by EKC in a concentration-dependent manner. However, the ${\delta}$ receptor selective agonists, DPDPE and deltorphine II, ${\mu}$ receptor agonists, DAMGO and TAPS, ${\kappa}_1-agonists$, U69593 and U50488H, and ${\varepsilon}-agonist,\;{\beta}-endorphin,$ did not. The concentration-response curve of EKC was shifted to right in the presence of naloxone, nor-binaltorphimine and bremazocine, respectively. These results suggest that ${\kappa}_2$ opioid receptor regulates histamine release in the fromtal cortex of the rat.

  • PDF

Selective blockade of spinal D2DR by levo-corydalmine attenuates morphine tolerance via suppressing PI3K/Akt-MAPK signaling in a MOR-dependent manner

  • Dai, Wen-Ling;Liu, Xin-Tong;Bao, Yi-Ni;Yan, Bing;Jiang, Nan;Yu, Bo-Yang;Liu, Ji-Hua
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.6.1-6.12
    • /
    • 2018
  • Morphine tolerance remains a challenge in the management of chronic pain in the clinic. As shown in our previous study, the dopamine D2 receptor (D2DR) expressed in spinal cord neurons might be involved in morphine tolerance, but the underlying mechanisms remain to be elucidated. In the present study, selective spinal D2DR blockade attenuated morphine tolerance in mice by inhibiting phosphatidylinositol 3 kinase (PI3K)/serine-threonine kinase (Akt)-mitogen activated protein kinase (MAPK) signaling in a ${\mu}$ opioid receptor (MOR)-dependent manner. Levo-corydalmine (l-CDL), which exhibited micromolar affinity for D2DR in D2/CHO-K1 cell lines in this report and effectively alleviated bone cancer pain in our previous study, attenuated morphine tolerance in rats with chronic bone cancer pain at nonanalgesic doses. Furthermore, the intrathecal administration of l-CDL obviously attenuated morphine tolerance, and the effect was reversed by a D2DR agonist in mice. Spinal D2DR inhibition and l-CDL also inhibited tolerance induced by the MOR agonist DAMGO. l-CDL and a D2DR small interfering RNA (siRNA) decreased the increase in levels of phosphorylated Akt and MAPK in the spinal cord; these changes were abolished by a PI3K inhibitor. In addition, the activated Akt and MAPK proteins in mice exhibiting morphine tolerance were inhibited by a MOR antagonist. Intrathecal administration of a PI3K inhibitor also attenuated DAMGO-induced tolerance. Based on these results, l-CDL antagonized spinal D2DR to attenuate morphine tolerance by inhibiting PI3K/Akt-dependent MAPK phosphorylation through MOR. These findings provide insights into a more versatile treatment for morphine tolerance.