• Title/Summary/Keyword: D1/D2 domain

Search Result 622, Processing Time 0.031 seconds

Temporal Anti-aliasing of a Stereoscopic 3D Video

  • Kim, Wook-Joong;Kim, Seong-Dae;Hur, Nam-Ho;Kim, Jin-Woong
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Frequency domain analysis is a fundamental procedure for understanding the characteristics of visual data. Several studies have been conducted with 2D videos, but analysis of stereoscopic 3D videos is rarely carried out. In this paper, we derive the Fourier transform of a simplified 3D video signal and analyze how a 3D video is influenced by disparity and motion in terms of temporal aliasing. It is already known that object motion affects temporal frequency characteristics of a time-varying image sequence. In our analysis, we show that a 3D video is influenced not only by motion but also by disparity. Based on this conclusion, we present a temporal anti-aliasing filter for a 3D video. Since the human process of depth perception mainly determines the quality of a reproduced 3D image, 2D image processing techniques are not directly applicable to 3D images. The analysis presented in this paper will be useful for reducing undesirable visual artifacts in 3D video as well as for assisting the development of relevant technologies.

  • PDF

Ultrahigh-Resolution Spectral Domain Optical Coherence Tomography Based on a Linear-Wavenumber Spectrometer

  • Lee, Sang-Won;Kang, Heesung;Park, Joo Hyun;Lee, Tae Geol;Lee, Eun Seong;Lee, Jae Yong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • In this study we demonstrate ultrahigh-resolution spectral domain optical coherence tomography (UHR SD-OCT) with a linear-wavenumber (k) spectrometer, to accelerate signal processing and to display two-dimensional (2-D) images in real time. First, we performed a numerical simulation to find the optimal parameters for the linear-k spectrometer to achieve ultrahigh axial resolution, such as the number of grooves in a grating, the material for a dispersive prism, and the rotational angle between the grating and the dispersive prism. We found that a grating with 1200 grooves and an F2 equilateral prism at a rotational angle of $26.07^{\circ}$, in combination with a lens of focal length 85.1 mm, are suitable for UHR SD-OCT with the imaging depth range (limited by spectrometer resolution) set at 2.0 mm. As guided by the simulation results, we constructed the linear-k spectrometer needed to implement a UHR SD-OCT. The actual imaging depth range was measured to be approximately 2.1 mm, and axial resolution of $3.8{\mu}m$ in air was achieved, corresponding to $2.8{\mu}m$ in tissue (n = 1.35). The sensitivity was -91 dB with -10 dB roll-off at 1.5 mm depth. We demonstrated a 128.2 fps acquisition rate for OCT images with 800 lines/frame, by taking advantage of NVIDIA's compute unified device architecture (CUDA) technology, which allowed for real-time signal processing compatible with the speed of the spectrometer's data acquisition.

Recent R&D Trends for 3D Deep Learning (3D 딥러닝 기술 동향)

  • Lee, S.W.;Hwang, B.W.;Lim, S.J.;Yoon, S.U.;Kim, T.J.;Choi, J.S.;Park, C.J.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • Studies on artificial intelligence have been developed for the past couple of decades. After a few periods of prosperity and recession, a new machine learning method, so-called Deep Learning, has been introduced. This is the result of high-quality big- data, an increase in computing power, and the development of new algorithms. The main targets for deep learning are 1D audio and 2D images. The application domain is being extended from a discriminative model, such as classification/segmentation, to a generative model. Currently, deep learning is used for processing 3D data. However, unlike 2D, it is not easy to acquire 3D learning data. Although low-cost 3D data acquisition sensors have become more popular owing to advances in 3D vision technology, the generation/acquisition of 3D data remains a very difficult problem. Moreover, it is not easy to directly apply an existing network model, such as a convolution network, owing to the variety of 3D data representations. In this paper, we summarize the 3D deep learning technology that have started to be developed within the last 2 years.

Directional ARMAX Model-Based Approach for Rotordynamics Identification, Part 2 : Performance Evaluations and Applications (방향 시계열에 의한 회전체 동특성 규명 : (II) 성능 평가 및 응용)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.60-69
    • /
    • 1999
  • In the first paper of this research$^{(1)}$. a new time series method. directional ARMAX (dARMAX) model-based approach. was proposed for rotordynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible. to account for the dynamic characteristics inherent in rotating machinery. In this second part. an evaluation of its performance characteristics based on both simulated and experimental data is presented. Numerical simulations are carried out to show that the method. a complex time series method. successfully implements the complex modal testing in the time domain. and it is superior in nature to the conventional ARMAX and the frequency-domain methods in the estimation of the modal parameters for isotropic and weakly anisotropic rotor systems. Experiments are carried out to demonstrate the applicability and the effectiveness of the dARMAX model-based approach, following the proposed fitting strategy. for the rotordynamics identification.

  • PDF

Trend Analysis on Korea's National R&D in Logistics

  • Jeong, Jae Yun;Cho, Gyusung;Yoon, Jieon
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.461-468
    • /
    • 2020
  • This study examined how national research and development (R&D) in the domain of logistics has changed recently in the Republic of Korea. We conducted basic statistical analysis and social network analysis on 5,327 logistics-related R&D projects undertaken during 2005-2019. Data for performing these analyses were collected from the R&D database of the National Science and Technology Information Service (NTIS). By constructing a co-occurrence matrix with keywords, we conducted degree and betweenness centrality analysis and visualized the network matrix to display a cluster map. This study presents our observations related to the following findings: (1) the chronical trends of logistics R&D, (2) focused fields of logistics R&D, (3) the relations among keywords, and (4) the characteristics of logistics R&D. Finally, we suggest policy implications to boost and diversify logistics R&D.

Structural Changes of the Spinach Photosystem II Reaction Center After Inactivation by Heat Treatment

  • Jang, Won-Cheoul;Tae, Gun-Sik
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.58-62
    • /
    • 1996
  • The structural changes in the electron donor side of the PSII reaction center have been monitored since heat treatment ($45^{\circ}C$ for 5 min) of thylakoids is known to decrease the oxygen evolving activity. In heat-treated spinach chloroplast thylakoids, the inhibitory effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the electron transport activity of the PSII reaction center from diphenyl carbazide to dichlorophenolindophenol became reduced approximately 3.8 times and [$^{14}C$]-labeled DCMU binding on the D1 polypeptide decreased to 25~30% that of intact thylakoid membranes, implying that the conformational changes of the DCMU binding pocket, residing on the D1 polypeptide, occur by heat treatment. The accessibility of trypsin to the $NH_2$-terminus of the cytochrome b-559 ${\alpha}$-subunit, assayed with Western blot using an antibody generated against the synthetic peptide (Arg-68 to Arg-80) of the COOH-terminal domain, was also increased, indicating that heat-treatment caused changes in the structural environments near the stromal side of the cytochrome b-559 ${\alpha}$-subunit, allowing trypsin more easily to cleave the $NH_2$-terminal domain. Therefore, the structural changes in the electron donor side of the PSII reaction center complexes could be one of the reasons why the oxygen evolving activity of the heat-treated thylakoid membranes decreased.

  • PDF

The Solution Structure of 18 residue YH motif Peptide within the Second fas-1 domain of ${\beta}ig-h3$

  • Han, Kyung-Doo;Son, Woo-Sung;Kim, Won-Je;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.1
    • /
    • pp.24-29
    • /
    • 2007
  • [ ${\beta}ig-h3$ ] is an extracellular matrix protein that mediates cell adhesion through interaction with integrins. The 18 residue YH motifs within each fas-1 domain are known to be responsible for the interaction with the ${\alpha}_v{\beta}_5$ integrin, and the synthetic YH motif peptides are known to inhibit endothelial tube formation and reduces the number of blood vessels, and so expected to be an effective inhibitor of angiogenesis. In this study, we solved the 3D structure of the 18 residue YH motif peptide (EALRDLLNNHILKSAMCA; D2 peptide) within the second fas-1 domain of ${\beta}ig-h3$ using NMR. The Peptide has ${\alpha}-helix$ structure at the C terminal region but the N terminal region is flexible. The present structural information may be helpful for developing more effective peptide drug candidate for the treatment of diseases dependent on angiogenesis.

  • PDF

FDTD Modeling of the Korean Human Head using MRI Images (MRI 영상을 이용한 한국인 인체 두부의 FDTD 모델링)

  • 이재용;명노훈;최명선;오학태;홍수원;김기회
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.582-591
    • /
    • 2000
  • In this paper, the Finite-Difference Time-Domain(FDTD) modeling method of the Korean human head is introduced to calculate electromagnetic energy absorption for the human head by mobile phones. After MRI scanning data is obtained, 2 dimensional(2D) segmentation is done from the 2D MRI image data by the semi-automatic method. Then, 3D dense segmentation data with $1mm\times1mm\times1mm$ is constructed from the 2D segmentation data. Using the 3D segmentation data, coarse FDTD models of human head that is tilted arbitrarily to model the condition of tilted usage of mobile phone.

  • PDF

VC-DIMENSION AND DISTANCE CHAINS IN 𝔽dq

  • ;Ruben Ascoli;Livia Betti;Justin Cheigh;Alex Iosevich;Ryan Jeong;Xuyan Liu;Brian McDonald;Wyatt Milgrim;Steven J. Miller;Francisco Romero Acosta;Santiago Velazquez Iannuzzelli
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.43-57
    • /
    • 2024
  • Given a domain X and a collection H of functions h : X → {0, 1}, the Vapnik-Chervonenkis (VC) dimension of H measures its complexity in an appropriate sense. In particular, the fundamental theorem of statistical learning says that a hypothesis class with finite VC-dimension is PAC learnable. Recent work by Fitzpatrick, Wyman, the fourth and seventh named authors studied the VC-dimension of a natural family of functions ℋ'2t(E) : 𝔽2q → {0, 1}, corresponding to indicator functions of circles centered at points in a subset E ⊆ 𝔽2q. They showed that when |E| is large enough, the VC-dimension of ℋ'2t(E) is the same as in the case that E = 𝔽2q. We study a related hypothesis class, ℋdt(E), corresponding to intersections of spheres in 𝔽dq, and ask how large E ⊆ 𝔽dq needs to be to ensure the maximum possible VC-dimension. We resolve this problem in all dimensions, proving that whenever |E| ≥ Cdqd-1/(d-1) for d ≥ 3, the VC-dimension of ℋdt(E) is as large as possible. We get a slightly stronger result if d = 3: this result holds as long as |E| ≥ C3q7/3. Furthermore, when d = 2 the result holds when |E| ≥ C2q7/4.

A study on nonlinear seismic response analysis of building considering frequency dependent soil impedance in time domain

  • Nakamura, Naohiro
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.91-107
    • /
    • 2009
  • In order to accurately estimate the seismic behavior of buildings, it is important to consider both nonlinear characteristics of the buildings and the frequency dependency of the soil impedance. Therefore, transform methods of the soil impedance in the frequency domain to the impulse response in the time domain are needed because the nonlinear analysis can not be carried out in the frequency domain. The author has proposed practical transform methods. In this paper, seismic response analyses considering frequency dependent soil impedance in the time domain are shown. First, the formulation of the proposed transform methods is described. Then, the linear and nonlinear earthquake response analyses of a building on 2-layered soil were carried out using the transformed impulse responses. Through these analyses, the validity and efficiency of the methods were confirmed.