Acknowledgement
Grant : 게임 및 애니메이션을 위한 인공 지능 기반의 3D 캐릭터 생성 기술 개발
Supported by : 한국콘텐츠진흥원
References
- S. Khan and S.P.Yong, "A Comparison of Deep Learning and Hand Crafted Features in Medical Image Modality Classification," Int. Conf. Comput. Inform. Sci., Kuala Lumpur, Malaysia, Aug. 15-17, 2016, pp. 633-638.
- T . Kim, "CNN, Convolution Neural Network 요약," Tawan.Kim Blog, Jan. 4, 2018. Available: http://taewan.-kim/post/cnn/
- 강대기, "딥러닝 기반 기계학습 기술 동향," 주간기술동향, 2016, pp. 12-24.
- I. J. Goodfellow et al., "Generative Adversarial Nets." Adv. Neural Inform. Process. Syst., Montreal, Canada, Dec. 8-13, 2014, pp. 1-9.
- A Tutorial on 3D Deep Learning, 2017. Available: http://3ddl.stanford.edu/
- Z. Lun, E. Kalogerakis, R. Wang, and A. Sheffer, "Functionality Preserving Shape Style Transfer," ACM Trans, Graphics (TOG), vol. 35, no. 6, Nov. 2016, pp. 209:1-209:14.
- Y. Zheng, D. Cohen-Or, and H.J. Mitra, "Smart Variations: Functional Substructures for Part Compatibility," Comput. Graphics Forum, vol. 32, no. 2, May, 2013, pp. 195-204.
- E. Kalogerakis et al., "A Probabilistic Model for Component-Based Shape Synthesis," ACM Trans. Graphics, vol. 31, no. 4, July 2012, pp. 55:1-55:11.
- A. Kar, S. Tulsiani, J. Carreira, and J. Malik, "Category-Specific Object Reconstruction from a Single Image," IEEE Conf. comput. Vis. Pattern, Recogn. (CVPR), Boston, MA, USA, June 7-12, 2015, pp. 1966-1974.
- J. Rock, T. Gupta, J. Thorsen, J. Gwak, D. Shin, and D. Hoiem, "Completing 3D Object Shape from one Depth Image," IEEE Conf. comput. Vis. Pattern, Recogn. (CVPR), Boston, MA, USA, June 7-12, 2015, pp. 2484-2493.
- Z. Lun, M. Gadelha, E. Kalogerakis, S. Maji, and R. Wang, "3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks," Sept. 2017, arXiv: 1707.06375.
- E. Dibra, H. Jain, C. Oztireli, R. Ziegler, and M. Gross, "HSNets: Estimating Human Body Shape from Silhouettes with Convolutional Neural Networks," Int. Conf. 3D Vision (3DV), Stanford, CA, USA, Oct. 25-28, 2016, pp. 108-117.
- H. Fan, H. Su, and L. Guibas, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image," Dec. 2016, arXiv: 1612.00603.
- J. Wu et al., "Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling," Proc. Int. Conf. Neural Inform. Process. Syst., Barcelona, Spain, Dec. 5-10, 2016, pp. 82-90.
- A.S. Jackson, A. Bulat, V. Argyriou, and G. Tzimiropoulos, "3D Face Reconstruction demo," Available: http://cvldemos.cs.nott.ac.uk/vrn/
- H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, "Multi-view Convolutional Neural Networks for 3D Shape Recognition," Sept. 2015, arXiv: 1505.00880.
- Kalogerakis, Averkiou, Maji, Chaudhuri, "3D Shape Segmentation with Projective Convolutional Networks," IEEE Conf. Comput. Vis. Pattern, Recogn. (CVPR), Honolulu, HI, USA, July 21-26, 2017, pp. 6630-6639.
- C.R. Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," Apr. 2017, arXiv: 1612.00593.
- Geometric Deep Learning, Available: http://geometricdeeplearning.com/