• Title/Summary/Keyword: D.P.R.K

Search Result 3,573, Processing Time 0.041 seconds

Development of OCB mode with impulsive driving scheme for improving moving picture quality

  • Kim, J.L.;Lee, C.H.;Park, S.Y.;Yoo, S.W.;Oh, J.H.;Lee, S.H.;Chai, C.C.;Park, C.W.;Ban, B.S.;Ahn, S.H.;Hong, M.P.;Chung, K.H.;Lim, S.K.;Kim, K.H.;Souk, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1049-1052
    • /
    • 2004
  • In general, contrary to the CRTs with impulsive emission, liquid crystal displays have motion artifacts such as blurring. ghost image, decrease of dynamic CR(contrast ratio), and stroboscopic motion due to hold type driving method. In this paper, to improve motion picture quality of LCDs. impulsive driving method of black data insertion was applied to the OCB mode which is well known for its fast LC response time and wide viewing angle properties. Subject evaluation was carried out with CRT, TN, SIPS(Super IPS). and impulsive driving OCB. Moving picture image quality near CRT was obtained in impulsive OCB driving mode

  • PDF

UNDERWATER DISTRIBUTION OF VESSEL NOISE (선박소음의 수중분포에 관한 연구)

  • PARK Jung Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.227-235
    • /
    • 1977
  • The noise pressure scattered underwater on account of the engine revolution of a pole and liner, Kwan-Ak-San(G. T. 234.96), was measured at the locations of Lat. $34^{\circ}47'N$, Long. $128^{\circ}53'E$ on the 16th of August 1976 and Lat. $34^{\circ}27'N$, Long. $128^{\circ}23'E$ on the 28th of July, 1977. The noise pressure passed through each observation point (Nos. 1 to 5), which was established at every 10m distance at circumference of outside hull was recorded when the vessel was cruising and drifted. In case of drifting, the revolution of engine was fixed at 600 r. p. m. and the noise was recorded at every 10 m distance apart from observation point No. 3 in both horizontal and vertical directions with $90^{\circ}$ toward the stern-bow line. In case of cruising, the engine was kept in a full speed at 700 r.p.m. and the sounds passed through underwater in 1 m depth were also recorded while the vessel moved back and forth. The noise pressure was analyzed with sound level meter (Bruel & Kjar 2205, measuring range 37-140 dB) at the anechoic chamber in the Institute of Marine Science, National Fisheries University of Busan. The frequency and sound waves of the noise were analyzed in the Laboratory of Navigation Instrument. From the results, the noise pressure was closely related to the engine revolution shelving that the noise pressure marked 100 dB when .400 r. p. m. and increase of 100 r. p. m. resulted in 1 dB increase in noise pressure and the maximum appeared at 600 r. p. m. (Fig.5). When the engine revolution was fixed at 700 r. p. m., the noise pressures passed through each observation point (Nos. 1 to 5) placed at circumference of out side hull were 75,78,76,74 and 68 dB, the highest at No.2, in case of keeping under way while 75,76,77,70 and 67 dB, the highest at No.3 in case of drifting respectively (Fig.5). When the vessel plyed 1,400 m distance at 700 r.p.m., the noise pressure were 67 dB at the point 0 m, 64 dB at 600m and 56 dB at 1,400m on forward while 72 at 0 m, 66 at 600 m and 57 dB at 1,400 m on backward respectively indicating the Doppler effects 5 dB at 0 m and 3 dB at 200 m(Fig.6). The noise pressures passed through the points apart 1,10,20,30,40 and 50 m depth underwater from the observation point No.7 (horizontal distance 20 m from the point No.3) were 68,75,62,59,55 and 51 dB respectively as the vessel was being drifted maintaining the engine revolution at 600 r. p. m. (Fig. 8-B) whereas the noise pressures at the observation points Nos.6,7,8,9 and 10 of 10 m depth underwater were 64,75,55,58,58 and 52 dB respectively(Fig.8-A).

  • PDF

THE STUDY ON THE NOISE IN THE VESSEL (선박소음에 관한 연구)

  • PARK Jung-Hee;KIM Sang-Han
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.4
    • /
    • pp.202-207
    • /
    • 1975
  • During the term of June, 7 to August 11, the noises in the maine engine room in terms of the r. p. m. of the Pung-Yang Ho (4,500 H. P.), the Chuk-Yang Ho (3,800 H. P.), the Dong-Bang Ho (3,000 H. P.), the Oh-Dae San Ho (2,690 H, P.), the Kwan-Ak-San Ho (1,000 H. P.) and the Back-Kyung Ho (850 H. P.) (Refer to Table 1) were measured with the use of sound level meter, which has measuring range 37-140 dB and the results obtained are as follows : 1. Capacity of the engine room becomes large according to the total H. P. of the main engine, but the vessels are using of a type of engine, i.e., 6 cylinder, and thus the noise, pressure has shown a tendency to become lower except Kwan-Ak-San Ho, Chuk-Yang Ho and Dong Bang Ho where the noise pressure was higher by 3 dB than curve of mean value. 2. The maximum noise pressure appeared even before the main engine reached the maximum r. p. m. and while the percentage of the r. p. m. varied depending on the vessel, the maximum noise appeared at around the $67-75\%$ of the r. p. m. 3. The maximum of noise pressure in the respective engine room ranged between 93.5-105 dB while it was between 72-81 dB at the fish process room in the stern trawl vessel where the oral communications were possible.

  • PDF

Interaction of Cu(II)-meso-tetrakis(n-N-methylpyridiniumyl)porphyrin (n = 2,3,4) with Native and Synthetic Polynucleotides Probed by Polarized Spectroscopy

  • Lee, Mi-Jin;Lee, Gil-Jun;Lee, Dong-Jin;Kim, Seog-K.;Kim, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1728-1734
    • /
    • 2005
  • The interactions of Cu(II)-meso-Tetrakis(n-N-methylpyridiniumyl)porphyrin (n = 2,3,4), respectively referred to as o-, m- and p-CuTMPyP, and DNA, poly$[d(A-T)_2]$ and poly$[d(G-C)_2]$ were investigated by circular and linear dichroism (CD and LD). In the o-CuTMPyP case, in which the rotation of the pyridinium ring is prevented, the shape of the CD spectrum when associated to DNA and poly$[d(A-T)_2]$ resembles and is characterized by a positive band at a low drug to DNA concentration ratio (R ratio) and is bisignate at a high R ratio. The former CD spectrum shape has been attributed to porphyrin that is bound monomerically outside of DNA while the latter can be attributed to those that are stacked. When o-CuTMPyP is bound to poly$[d(G-C)_2]$, the excitonic CD appeared at a relatively high R ratio. In contrast, a characteristic negative CD band in the Soret region was apparent for both m- and p-CuTMPyP when bound to DNA and poly$[d(G-C)_2]$ at the low R ratios, indicating that the porphyrin molecule intercalates. However, the DNA is bent near the intercalation site and the plane of the porphyrin molecule tilts relative to the DNA helix axis, as judged by the magnitude of the reduced LD. Various stacking patterns were identified by the shape of the CD spectrum for m- and p-CuTMPyP when bound to poly$[d(A-T)_2]$. Three species for the former complex and two for the latter complex were found which may reflect the extent of the stacking.

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

Construction of L-Threonine Overproducing Escherichia coli by Cloning of the Threonine Operon

  • Lee, Jin-Ho;Oh, Jong-Won;Noh, Kap-Soo;Lee, Hyune-Hwan;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.243-247
    • /
    • 1992
  • The thr operon of Escherichia coli TF427, an $\alpha$-amino-$\beta$-hydroxyvaleric acid (AHV)-resistant threonine overproducer, was cloned in a pBluescriptII $KS^+$ plasmid by complementation of E. coli mutants. All clones contained a common 8.8 kb HindIII-generated DNA fragment and complemented the thrA, thrB, and thrC mutants by showing that these clones contained the whole thr operon. This thr operon was subcloned in the plasmid vectors pBR322, pUC18, and pECCG117, an E. coli/Corynebacterium glutamicum shuttle vector, to form recombinant plasmids pBTF11, pUTF25 and pGTF18, respectively. The subcloned thr operon was shown to be present in a 6.0 kb insert. A transformant of E. coli TF125 with pBTF11 showed an 8~11 fold higher aspartokinase I activity, and 15~20 fold higher L-threonine production than TF125, an AHV-sensitive methionine auxotroph. Also, it was found that the aspartokinase I activity of E. coli TF125 harboring pBTF11 was not inhibited by threonine and its synthesis was not repressed by threonine plus isoleucine.

  • PDF

Quantity and Characteristics of Manure Produced Holstein Dry Cow (홀스타인 건유우의 분뇨배설량과 이화학적 특성)

  • Choi, D.Y.;Kang, H.S.;Kwag, J.H.;Choi, H.C.;Kim, J.H.;Kim, T.I.;Park, C.H.;Jeon, B.S.;Han, J.D.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.107-110
    • /
    • 2002
  • This study was carried out to investigate the quantity of Holstein dry cow manure excreted and their characteristics. The results obtained in this study were summarized as follow; The average body weight of the Holstein dry cow during experiment was 619.9kg. The feed intake(DM basis) and water consumption was 10.7, 38.6kg/day/head, repectively. The manure production of Holstein dry cow was 44.8kg/day/head (feces 26.9, urine 17.9kg). The moisture content of feces and urine was 84.5%, 95.3%, respectively. Wastewater pollutant concentration of $BOD_5$(Biochemical Oxygen demand), $COD_{Mn}$ (Chemical Oxygen demand), SS(Suspended Solids), T-N(Total Nitrogen) and T-P(Total Phosphorus), excreted from Holstein dry cow was 16,874,55,763, 87,333, 2,353, $368mg/{\ell}$ in feces and 5,621, 8,673, 518, 2,423, $3mg/{\ell}$ in urine, repectively. The fertilizer content of manure, N(Nitrogen), $P_2O_5$(Phosphoric acid) and $K_2O$(Potassium oxide) was 0.24, 0.08, 0.15% in feces and 0.24, 0.001, 0.30% in urine, respectively.

  • PDF

Evaluation of Standardized Uptake Value and Metabolic Tumor Volume between Reconstructed data and Re-sliced data in PET Study (PET 검사 시 Reconstructed data와 Re-sliced data의 표준섭취계수와 Metabolic Tumor Volume의 비교 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.3-8
    • /
    • 2016
  • Purpose SUV is one of the parameters that assist diagnosis in origin, metastasis and staging of cancer. Specially, it is important to compare SUV before and after chemo or radiation therapy to find out effectiveness of treatment. Storing PET data which has no quantitative change is needed for SUV comparison. However, there is a possibility to loss the data in external hard drive or MINIpacs that are managed by department of nuclear medicine. The aim of this study is to evaluate SUV and metabolic tumor volume (MTV) among reconstructed data (R-D) in workstation, R-D and re-sliced data (S-D) in PACS. Materials and Methods Data of 20 patients (aged $60.5{\pm}8.3y$) underwent $^{18}F-FDG$ PET (Biograph truepoint 40, mCT 40, mCT 64, mMR, Siemens) study were analysed. $SUV_{max}$, $SUV_{peak}$ and MTV were measured in liver, aorta and tumor after sending R-D in workstation, R-D and S-D in PACS to syngo.via software. Results R-D of workstation and PACS showed the same value as mean $SUV_{max}$ in liver, aorta and tumor were $2.95{\pm}0.59$, $2.35{\pm}0.61$, $10.36{\pm}6.15$ and $SUV_{peak}$ were $2.70{\pm}0.51$, $2.07{\pm}0.43$, $7.67{\pm}3.73$(p>0.05) respectively. Mean $SUV_{max}$ of S-D in PACS were decreased by 5.18%, 7.22%, 12.11% and $SUV_{peak}$ 2.61%, 3.63%, 10.07%(p<0.05). Correlation between R-D and S-D were $SUV_{max}$ 0.99, 0.96, 0.99 and $SUV_{peak}$ 0.99, 0.99, 0.99. And 2SD in balnd-altman analysis were $SUV_{max}$ 0.125, 0.290, 1.864 and $SUV_{peak}$ 0.053, 0.103, 0.826. MTV of R-D in workstation and PACS show the same value as $14.21{\pm}12.72cm^3$(p>0.05). MTV in PACS was decreased by 0.12% compared to R-D(p>0.05). Correlation and 2SD between R-D and S-D were 0.99 and 2.243. Conclusion $SUV_{max}$, $SUV_{peak}$, MTV showed the same value in both of R-D in workstation and PACS. However, there was statistically difference in $SUV_{max}$, $SUV_{peak}$ of S-D compare to R-D despite of high correlation. It is possible to analyse reliable pre and post SUV if storing R-D in main hospital PACS system.

  • PDF