• Title/Summary/Keyword: D-xylanase

Search Result 74, Processing Time 0.023 seconds

Xylanase supplementation in energy-deficient corn-based diets: impact on broiler growth, nutrient digestibility, chyme viscosity and carcass proximates

  • Bernadette Gerpacio Sta. Cruz;Jun Seon Hong;Myunghwan Yu;Elijah Ogola Oketch;Hyeonho Yun;Dinesh D. Jayasena;Jung-Min Heo
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1246-1254
    • /
    • 2024
  • Objective: The goal of the current study was to investigate the impact of various concentrations of xylanase in energy-deficient corn-based diets on the growth performance, carcass characteristics, nutrient digestibility, and digesta viscosity in broilers from 7 to 35 days of age. Methods: A total of 280 seven-day-old Ross 308 broilers were randomly allocated to one of the five dietary treatments following a completely randomized design with 8 replicates and 7 birds per cage. The treatments were: i) positive control (PC, without xylanase); ii) NC-1 (80 kcal/kg ME reduced from PC); iii) NC-2 (100 kcal/kg ME reduced from PC); iv) NCX-1 (NC-1 + 2,000 U/kg xylanase); and v) NCX-2 (NC-2 + 3,000 U/kg xylanase). Body weight, weight gain, feed intake, and feed conversion ratio were determined weekly to evaluate growth performance. One bird per pen was sacrificed for ileal digesta collection to determine the viscosity and digestibility of energy, dry matter, crude protein on days 24 and 35, however breast and leg meat samples were obtained for proximate analysis (moisture, crude protein, fat, and ash) on day 35. Results: Birds fed diets supplemented with xylanase regardless of the amount had higher (p<0.05) body weights, daily gains, and improved feed efficiency compared to NC diets all throughout the experimental period. Feed intake was not affected (p>0.05) by the addition of xylanase. Moreover, lowered (p<0.05) viscosity of the ileal digesta were observed upon xylanase inclusion in the diets compared to the birds fed NC diets on day 24. Ileal nutrient digestibility and meat proximate composition were not affected (p>0.05) by xylanase. Conclusion: The present study indicated that the xylanase at 2,000 U/kg and 3,000 U/kg levels compensates for the 80 kcal/kg and 100 kcal/kg dietary energy levels, respectively, without having adverse effects on the growth performance, carcass characteristics, nutrient digestibility, and digesta viscosity of broilers.

Effect of Xylanase on Performance and Apparent Metabolisable Energy in Starter Broilers Fed Diets Containing One Maize Variety Harvested in Different Regions of China

  • O'Neill, H.V. Masey;Liu, N.;Wang, J.P.;Diallo, A.;Hill, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • The objective of this study was to investigate the variability in broiler performance, apparent metabolisable energy (AME) and ileal digestible energy (IDE) between five different maize samples fed with and without xylanase at 16,000 U/kg. Various in vitro characterisations were conducted to determine if any could predict performance or AME. Samples of the maize were harvested in five diverse regions and fed individually in a mash diet as follows (g/kg): test maize 608.3; soya bean meal (SBM) 324.1; poultry fat 25.2; salt 4.6; met 2.6; lys 1.6; thr 0.5; limestone 9.7, dical 18.4; vit/min 5.0; CP 210 and ME (kcal/kg) 3,085. The diets were fed to 720 broilers with 6 replicates, each containing 12 birds per treatment, from 0 to 18 d of age. Maize samples were analysed for starch, protein, crude fibre, fat, protein solubility index (PSI) and vitreousness using near infra red reflectance spectroscopy (NIR). They were also assayed using an in vitro starch digestibility method. The results showed that there was no effect of harvest region on the feed intake (FI), body weight gain (BWG) or feed conversion ratio (FCR) of the broilers over the 18 d period (p = 0.959, 0.926, 0.819 respectively). There was an improvement in all parameters with the addition of xylanase (FI p = 0.011; BWG and FCR p<0.001). There was a significant positive effect of xylanase on IDE, AME, IDE Intake (IDEI) and AME intake (AMEI) (p<0.0001 in all cases). Although there was no significant effect of maize source, there was a strong trend towards variability in IDE (p = 0.066) and AME (p = 0.058). There were no significant correlations (p<0.05) between any proximate or physiochemical values and any performance or AME values. This may suggest that none of those selected were suitable predictors for performance or AME. The broilers performed well according to the breed guidelines, with slightly increased FI, increased BWG and similar FCR prior to the addition of xylanase. When FCR and BWG were analysed with FI as a covariate, xylanase addition remained significant suggesting that the improvement in BWG and FCR was driven by an increase in digestibility and nutrient availability.

Improvement of the Thermostability of Xylanase from Thermobacillus composti through Site-Directed Mutagenesis

  • Tian, Yong-Sheng;Xu, Jing;Chen, Lei;Fu, Xiao-Yan;Peng, Ri-He;Yao, Quan-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1783-1789
    • /
    • 2017
  • Thermostability is an important property of xylanase because high temperature is required for its applications, such as wood pulp bleaching, baking, and animal feedstuff processing. In this study, XynB from Thermobacillus composti, a moderately thermophilic gram-negative bacterium, was modified via site-directed mutagenesis (based on its 3D structure) to obtain thermostable xylanase, and the properties of this enzyme were analyzed. Results revealed that the half-life of xylanase at $65^{\circ}C$ increased from 10 to 50 min after a disulfide bridge was introduced between the ${\alpha}$-helix and its adjacent ${\beta}$-sheet at S98 and N145. Further mutation at the side of A153E named XynB-CE in the C-terminal of this ${\alpha}$-helix enhanced the half-life of xylanase for 60 min at $65^{\circ}C$. Therefore, the mutant may be utilized for industrial applications.

Carbon Catabolite Repression (CCR) of Expression of the XylanaseA Gene of Bacillus stearothermophilus No.236

  • Ha, Gyong-Sik;Choi, Il-Dong;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.131-137
    • /
    • 2001
  • Previous work has identified that only the catabolite responsive element A (creA; previously called cre-2) out of two potential cre sequences (cre-1: nucleotide +160 to +173 and cre-2: +173 to +186), recognized within the coding region of the xylanaseA gene (xynA) of Bacillus stearothermophilus No.236, was actually, was actually involved in the carbon catabolite repression(CCR) of xynA expression in B. subtilis. However, the level of CCR of xynA expression in the original B.stearothermophilus No.236 strain (70-fold repression). Therefore, to search for an additional cre element in the promoter region, the upstream region of the xynA gene was subcloned by chromosome walking, and as a result, another potential cre element (nucleotide -124∼-137; designated creB) was recognized in this region. The cre-like sequence revealed a high homology to the cre consensus sequence. The xylanase activity of B. subtilis MW15 bearing pWPBR14 (containing creA and creB) cultured in a medium containing xylose as the sole carbon source was about 7.7 times higher than that observed for the same culture containing glucose. B. subtilis MW15 bearing pWPBR23 (containing only creA) produced an activity about 2.4 times higher. This pattern of CCR was confirmed using derivatives of xynA::aprA fusion plasmids. Furthermore, a measurement of the amounts of the xynA transcript showed a similar pattern as that for the production of xylanase. In addition, the synthesis of xylanase in B. subtilis QB7115 [a catabolite control protein A (ccpA) mutant strain] carrying pWPBR14 was almost completely relieved from glucose repression. Together, these results lead to a conclusion that the CCR of the expression of the xynA gene is mediated by CcpA binding at creA and creB sites in B. subtilis.

  • PDF

Molecular Cloning and Expression of the Trichoderma harzianum C4 Endo-${\beta}-1$,4-Xylanase Gene in Saccharomyces cerevisiae

  • Lee, Jung-Min;Shin, Ji-Won;Nam, Jae-Kook;Choi, Ji-Young;Jeong, Choon-Soo;Han, In-Seob;Nam, Soo-Wan;Choi, Yun-Jaie;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.823-828
    • /
    • 2009
  • An endo-${\beta}-1$,4-xylanase (${\beta}$-xylanase) from Trichoderma harzianum C4 was purified without cellulase activity by sequential chromatographies. The specific activity of the purified enzyme preparation was 430 units/mg protein on D-xylan. The complementary DNA (cDNA) encoding ${\beta}$-xylanase (xynII) was amplified by PCR and isolated from cDNA PCR libraries constructed from T. harzianum C4. The nucleotide sequence of the cDNA fragment contained an open reading frame of 663 bp that encodes 221 amino acids, of which the mature protein is homologous to several ${\beta}$-xylanases II. An intron of 63 bp was identified in the genomic DNA sequence of xynII. This gene was expressed in Saccharomyces cerevisiae strains under the control of adh1 (alcohol dehydrogenase I) and pgk1 (phosphoglycerate kinase I) promoters in 2 ${\mu}$-based plasmids, which could render recombinants able to secrete ${\beta}$-xylanase into the media.

Purification and Characterization of Exo-xylanase from Escherichia coli Cells Harboring the Recombinant Plasmid pMGl (재조합 균주 Escherichia coli가 생산하는 Bacillus stearothermophilus Exo-xylanase의 정제 및 특성)

  • 문애란;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.574-582
    • /
    • 1992
  • Exo-xylanase encoded by the xylA gene of Bacillus stearothermoPhillus was produced from Escherichia coli ]M109 carrying a recombinant plasmid pMGL Synthesis of the enzyme was observed to be cell-associated, and about 94% of the enzyme synthesized was located in the cytoplasmic region. The maximum production was attained when the E. coli strain was grown at $37^{\circ}C$ for 8 hours on the medium containing 0.5% fructose, 1.0% tryptone, 1.0% sodium chloride, and 0.5% yeast extract. The exo-xylanase was purified to homogeneity using a combination of salting out with ammonium sulfate, DEAE-Sepharose CL-6B ion exchange chromatography, Sephadex G-IOO gel filtration, and Sephadex G-150 gel filtration. The' purified enzyme was most active at pH 6.0 and $45^{\circ}C$. $Ca^{2+}$ and $Co^{2+}$ activated the exo-xylanase activity by about 20% while $Ag^{2+}$, $Fe^{2+}$, $Mg^{2+}$ and $Zn^{2+}$ inhibited the enzyme activity by up to 60%. The $K_m$, value on p-nitrophenyl-$\beta$-D-xylanopyranoside was 2.75 mM. The enzyme had a pI value of 4.7. The estimated molecular weight of the native protein was 200,000 daL SDS-polyacrylamide gel electrophoresis analysis suggested that the native enzyme was a trimer composed of three identical 66,000 da!. polypeptides. The purified enzyme efficiently converted all the xylo-oligosaccharides tested to xylose. It was also confirmed that the enzyme split xylans in an exo-manner even though the degree of hydrolysis was fairly low. The xylanolytic enzyme was, therefore, classified to be one of the few bacterial exo-xylanases lacking transferase activity.

  • PDF

Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2

  • Ellouze, Olfa Elleuch;Loukil, Sana;Marzouki, Mohamed Nejib
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.653-658
    • /
    • 2011
  • Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (${\beta}5$ and ${\beta}6$ strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing $E_{86}$ and $E_{178}$ residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.

Asparagine Residue at Position 71 is Responsible for Alkali-Tolerance of the Xylanase from Bacillus Pumilus A-30

  • Liu, Xiang-Mei;Qi, Meng;Lin, Jian-Aiang;Wu, Zhi-Hong;Qu, Yin-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.534-538
    • /
    • 2001
  • The xynA gene encoding an alikali-tolerant endo-1,4-${\beta}$-xylanase (XYN) was cloned from the alkalophilic Bacillus pumilus A-30. The nucleotide sequence of a 974-bp DNA fragment containing the xynA was determined. An ORF of 684 nucleotides that encoded a protein of 228 amino aicds was detected. Asparagine-71 of XYN from B. Pumilus A-30 showed to be highly conservative in alkaline xylanases of family G/11, upon comparing the amino acid sequences of 17 family G/11 xylanases. Site-directed mutation of N71D of the xynA gene resulted in a decrease of 12.4% in the specific acitivity and a significant decline in the enzyme activity in the alkaline pH range.

  • PDF

Reaction mechanism of translated xylanase from Thermatoga maritima MSB 8 and preparation of propyl-glycosides

  • Park, Jun-Seong;Kitaoka, Motomitsu;Hayashi, Kiyoshi;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.477-480
    • /
    • 2002
  • A thermostable xylanase from Thermotoga maritima (Xyn B) cleaves several pNP-glycosides of monosaccharides. We found that the initial product of the cleavage of pNP-xyloside (pNP-Xy1) was a disaccharide, not xylose, indicating that xylosyl unit of pNP-Xyl was transglycosylated to another pNP-Xyl. We determined that the disaccharide was xylobiose which has the linkage of the ${\beta}$ 1-4, and described the reaction mechanism of the Xyn B. Also, we produced the several pNP-glycosides and propyl-disaccharides from the transglycosylation of Xyn B with varial glycosides and/or 1-propanol. All reaction products were purified by column chromatography (Toyo-pearl HW-40C, 45 cm${\times}$2.5 cm or 45 cm ${\times}$ 2.5 cm${\times}$ 2). The isolated products were analyzed by means of 1D and 2D NMR.

  • PDF

Endogenous enzyme activities and tibia bone development of broiler chickens fed wheat-based diets supplemented with xylanase, β-glucanase and phytase

  • Al-Qahtani, Mohammed;Ahiwe, Emmanuel Uchenna;Abdallh, Medani Eldow;Chang'a, Edwin Peter;Gausi, Harriet;Bedford, Michael R;Iji, Paul Ade
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1049-1060
    • /
    • 2021
  • Objective: This study assessed the effect of different levels of xylanase, β-glucanase and phytase on intestinal enzyme activities and tibia bone development in broiler chickens fed wheat-based diets. Methods: Twelve experimental diets were formulated using a 3×2×2 factorial design (three doses of phytase and two doses of both xylanase and β-glucanase) and offered to 648 day-old Ross 308 male chicks having 6 replicates groups with 9 birds per replicate and lasted for 35 days. Results: An interaction between the enzymes products improved (p<0.01) the activity of chymotrypsin. Protein content at d 10 was highest (p<0.001) with addition of phytase while general proteolytic activity (GPA) (p<0.02) and lipase activity (p<0.001) were decreased. At d 24, there were improvements in protein content (p<0.01) and lipase (p<0.04) with supplementation of superdose phytase. Addition of superdose phytase decreased in chymotrypsin (p<0.02), trypsin (p<0.01) and GPA (p<0.001). The optimum dose of xylanase decreased the chymotrypsin activity (p = 0.05), while the GPA (p<0.001) was increased with the optimum level of β-glucanase. Superdose phytase supplementation at d 10 improved maltase (p = 0.05), sucrase (p<0.001) and alkaline phosphatase (p<0.001) activities in the jejunum while aminopeptidase activity was highest (p<0.005) with the low level of phytase. Protein content of jejunum mucosa was bigger (p<0.001) in birds fed superdose phytase while maltase activity (p<0.001) at d 24 was reduced by this treatment. Sucrase (p<0.04) and aminopeptidase activities (p<0.001) improved when diets supplemented with low levels of phytase. Tibia bone breaking strength was highest (p<0.04) with addition of low level of superdose phytase or optimum level of β-glucanase. Bone dry matter content decreased (p<0.04) when diets supplemented with phytase. Conclusion: From the results obtained in this study, supplementation of superdose phytase was the most effective, however, the cost-benefit analysis of the use of such a dose needs to be evaluated.