DOI QR코드

DOI QR Code

Xylanase supplementation in energy-deficient corn-based diets: impact on broiler growth, nutrient digestibility, chyme viscosity and carcass proximates

  • Bernadette Gerpacio Sta. Cruz (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Jun Seon Hong (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Myunghwan Yu (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Elijah Ogola Oketch (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Hyeonho Yun (Technical Marketing, Protein Solution Division, CJ CheilJedang Bio) ;
  • Dinesh D. Jayasena (Department of Animal Science, Uva Wellassa University) ;
  • Jung-Min Heo (Department of Animal Science and Biotechnology, Chungnam National University)
  • Received : 2023.09.05
  • Accepted : 2024.01.17
  • Published : 2024.07.01

Abstract

Objective: The goal of the current study was to investigate the impact of various concentrations of xylanase in energy-deficient corn-based diets on the growth performance, carcass characteristics, nutrient digestibility, and digesta viscosity in broilers from 7 to 35 days of age. Methods: A total of 280 seven-day-old Ross 308 broilers were randomly allocated to one of the five dietary treatments following a completely randomized design with 8 replicates and 7 birds per cage. The treatments were: i) positive control (PC, without xylanase); ii) NC-1 (80 kcal/kg ME reduced from PC); iii) NC-2 (100 kcal/kg ME reduced from PC); iv) NCX-1 (NC-1 + 2,000 U/kg xylanase); and v) NCX-2 (NC-2 + 3,000 U/kg xylanase). Body weight, weight gain, feed intake, and feed conversion ratio were determined weekly to evaluate growth performance. One bird per pen was sacrificed for ileal digesta collection to determine the viscosity and digestibility of energy, dry matter, crude protein on days 24 and 35, however breast and leg meat samples were obtained for proximate analysis (moisture, crude protein, fat, and ash) on day 35. Results: Birds fed diets supplemented with xylanase regardless of the amount had higher (p<0.05) body weights, daily gains, and improved feed efficiency compared to NC diets all throughout the experimental period. Feed intake was not affected (p>0.05) by the addition of xylanase. Moreover, lowered (p<0.05) viscosity of the ileal digesta were observed upon xylanase inclusion in the diets compared to the birds fed NC diets on day 24. Ileal nutrient digestibility and meat proximate composition were not affected (p>0.05) by xylanase. Conclusion: The present study indicated that the xylanase at 2,000 U/kg and 3,000 U/kg levels compensates for the 80 kcal/kg and 100 kcal/kg dietary energy levels, respectively, without having adverse effects on the growth performance, carcass characteristics, nutrient digestibility, and digesta viscosity of broilers.

Keywords

Acknowledgement

The authors would like to show their appreciation to CJ Cheiljedang Corp., Republic of Korea, who supported this research through financial assistance and provision of additives.

References

  1. Van Hoeck V, Papadopoulos GA, Giannenas I, et al. New intrinsically thermostable xylanase improves broilers' growth performance, organ weights, and affects intestinal viscosity and pH. Agriculture 2021;11:1235. https://doi.org/10.3390/agriculture11121235 
  2. Williams MP, Klein JT, Wyatt CL, York TW, Lee JT. Evaluation of xylanase in low-energy broiler diets. J Appl Poult Res 2014;23:188-95. https://doi.org/10.3382/japr.2013-00856 
  3. Zhang L, Xu J, Lei L, Jiang Y, Gao F, Zhou GH. Effects of xylanase supplementation on growth performance, nutrient digestibility and non-starch polysaccharide degradation in different sections of the gastrointestinal tract of broilers fed wheat-based diets. Asian-Australas J Anim Sci 2014;27:85561. https://doi.org/10.5713/ajas.2014.14006 
  4. Van Hoeck V, Somers I, Abdelqader A, Wealleans AL, Van de Craen S, Morisset D. Xylanase impact beyond performance: a microbiome approach in laying hens. PLoS ONE 2021;16:e0257681. https://doi.org/10.1371/journal.pone.0257681 
  5. Stefanello C, Vieira SL, Carvalho PS, Sorbara JOB, Cowieson AJ. Energy and nutrient utilization of broiler chickens fed corn-soybean meal and corn-based diets supplemented with xylanase. Poult Sci 2016;95:1881-7. https://doi.org/10.3382/ps/pew070 
  6. Kouzounis D, Hageman JA, Soares N, Michiels J, Schols HA. Impact of xylanase and glucanase on oligosaccharide formation, carbohydrate fermentation patterns, and nutrient utilization in the gastrointestinal tract of broilers. Animals 2021;11:1285. https://doi.org/10.3390/ani11051285 
  7. Baker JT, Duarte ME, Holanda DM, Kim SW. Friend or foe? Impacts of dietary xylans, xylooligosaccharides, and xylanases on intestinal health and growth performance of monogastric animals. Animals 2021;11:609. https://doi.org/10.3390/ani11030609 
  8. Awati A, Simmins H. Xylanase solutions for broiler feed: enzyme innovation finally hits the market [Internet]. Bogota, Colombia: EW Nutrition; c2022 [cited 2023 Aug 2]. Available from: https://ew-nutrition.com/xylanase-solutions-for-broilerfeed/
  9. Kiarie E, Romero LF, Ravindran V. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult Sci 2014;93:1186-96. https://doi.org/10.3382/ps.2013-03715 
  10. Feng Y, Wang L, Khan A, Zhao R, Wei S, Jing X. Fermented wheat bran by xylanase-producing Bacillus cereus boosts the intestinal microflora of broiler chickens. Poult Sci 2020;99:263-71. https://doi.org/10.3382/ps/pez482 
  11. Pourreza J, Classen HL. Effects of supplemental phytase and xylanase on phytate phosphorus degradation, ileal protein and energy digestibility of a corn-soybean-wheat bran diets in broiler chicks. J Agric Sci Technol 2001;3:19-25. https://jast.modares.ac.ir/article-23-9188-en.html 
  12. Sztupecki W, Rhazi L, Depeint F, Aussenac T. Functional and nutritional characteristics of natural or modified wheat bran non-starch polysaccharides: a literature review. Foods 2023;12:2693. https://doi.org/10.3390/foods12142693 
  13. National Institute of Animal Science. Korean feeding standard for poultry [Internet]. Wanju, Korea: National Institute of Animal Science; c2018 [cited 2023 Aug 2]. Available from: https://lib.rda.go.kr/search/mediaView.do?mets_no=000000306484 
  14. Aviagen T. Ross 308 broiler: nutrition specifications. Huntsville, AL, USA: Aviagen Group; 2014. 
  15. Oketch EO, Lee JW, Yu M, et al. Physiological responses of broiler chickens fed reduced-energy diets supplemented with emulsifiers. Anim Biosci 2022;35:1929-39. https://doi.org/10.5713/ab.22.0142 
  16. Liu WC, Kim IH. Effects of dietary xylanase supplementation on performance and functional digestive parameters in broilers fed wheat-based diets. Poult Sci 2017:96:566-73. https://doi.org/10.3382/ps/pew258 
  17. Fenton TW, Fenton M. An improved procedure for the determination of chromic oxide in feed and feces. Can J Anim Sci 1979;59:631-4. https://doi.org/10.4141/cjas79-081 
  18. Latimer GW. Official methods of analysis of AOAC International. 20th ed. Rockville, MD, USA: AOAC International; 2016. 
  19. Premathilaka KT, Nawarathne SR, Nambapana MN, et al. Partial or complete replacement of fishmeal with fermented soybean meal on growth performance, fecal composition, and meat quality in broilers. J Anim Sci Technol 2020:62:824-39. https://doi.org/10.5187/jast.2020.62.6.824 
  20. Jaworski NW, Laerke HN, Bach Knudsen KE, Stein HH. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J Anim Sci 2015;93:110313. https://doi.org/10.2527/jas.2014-8147 
  21. Saleh AA, Kirrella AA, Abdo SE, et al. Effects of dietary xylanase and arabinofuranosidase combination on the growth performance, lipid peroxidation, blood constituents, and immune response of broilers fed low-energy diets. Animals 2019;9:467. https://doi.org/10.3390/ani9070467 
  22. Ismael E, Ismail EM, Khalefa HS, et al. Evaluation of saccharomyces cerevisiae yeast fermentate and xylanase in reduced energy diet fed to broiler chicken. Int J Vet Sci 2022;11:14150. https://doi.org/10.47278/journal.ijvs/2021.096 
  23. Nusairat B, Wang JJ. The effect of a modified GH11 xylanase on live performance, gut health, and Clostridium perfringens excretion of broilers fed corn-soy diets. Front Vet Sci 2021;8:678536. https://doi.org/10.3389/fvets.2021.678536 
  24. Inayah SR, Mutia R, Jayanegara A, Yanza YR, Amnah S. Effects of xylanase supplementation on the performance, nutrient digestibility, and digestive organ profiles of broiler chickens: a meta-analysis. J World Poult Res 2022;12:199-211. https://doi.org/10.36380/jwpr.2022.23 
  25. Cowieson AJ, Bedford MR, Ravindran V. Interactions between xylanase and glucanase in maize-soy-based diets for broilers. Br Poult Sci 2010;51:246-57. https://doi.org/10.1080/00071661003789347 
  26. Nian, F, Guo YM, Ru YJ, Peron A, Li FD. Effect of xylanase supplementation on the net energy for production, performance and gut microflora of broilers fed corn/soy-based diet. Asian-Australas J Anim Sci 2011;24:1282-7. https://doi.org/10.5713/ajas.2011.10441 
  27. Vasanthakumari BL, Gedye KR, Abdollahi MR, et al. A new monocomponent xylanase improves performance, ileal digestibility of energy and nutrients, intestinal morphology, and intestinal microbiota in young broilers. J Appl Poult Res 2023;32:100301. https://doi.org/10.1016/j.japr.2022.100301 
  28. Gorenz B, Iseri V, Rubach J, Dilger RN. Xylanase supplementation of pelleted wheat-based diets increases growth efficiency and apparent metabolizable energy and decreases viscosity of intestinal contents in broilers. Poult Sci 2022;101:102220. https://doi.org/10.1016/j.psj.2022.102220 
  29. Khadem A, Lourenco M, Delezie E, et al. Does release of encapsulated nutrients have an important role in the efficacy of xylanase in broilers? Poult Sci 2016;95:1066-76. https://doi.org/10.3382/ps/pew002 
  30. Knudsen KEB. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult Sci 2014;93:2380-93. https://doi.org/10.3382/ps.2014-03902 
  31. Wang J, Cao H, Bao C, et al. Effects of xylanase in corn-or wheat-based diets on cecal microbiota of broilers. Front Microbiol 2021;12:757066. https://doi.org/10.3389/fmicb.2021.757066 
  32. Olukosi OA, Cowieson AJ, Adeola O. Age-related influence of a cocktail of xylanase, amylase, and protease or phytase individually or in combination in broilers. Poult Sci 2007;86:77-86. https://doi.org/10.1093/ps/86.1.77 
  33. Engberg RM, Hedemann MS, Steenfeldt S, Jensen BB. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult Sci 2004;83:925-38. https://doi.org/10.1093/ps/83.6.925 
  34. Masey-O'Neill HV, Singh M, Cowieson AJ. Effects of exogenous xylanase on performance, nutrient digestibility, volatile fatty acid production and digestive tract thermal profiles of broilers fed on wheat-or maize-based diet. Br Poult Sci 2014;55:351-9. https://doi.org/10.1080/00071668.2014.898836 
  35. Cowieson AJ. Strategic selection of exogenous enzymes for corn/soy-based poultry diets. J Poult Sci 2010;47:1-7. https://doi.org/10.2141/jpsa.009045 
  36. Williams MP, O'Neill HVM, York T, Lee JT. Effects of nutrient variability in corn and xylanase inclusion on broiler performance, nutrient utilisation, and volatile fatty acid profiles. J Appl Anim Nutr 2018;6:1-10. https://doi.org/10.1017/jan.2017.11 
  37. Khan SH, Sardar R, Siddique B. Influence of enzymes on performance of broilers fed sunflower-corn based diets. Pak Vet J 2006;26:109-14. 
  38. Elsagheer MA, Mahdi YM, Essa NM, El-Sagheer Mohamed M. Impact of dietary supplementation of probiotic or enzymes on carcass traits and intestinal microflora of broiler. Assiut J Agric Sci 2022;53:108-24.  https://doi.org/10.21608/ajas.2022.155347.1166