• Title/Summary/Keyword: D-serine

Search Result 199, Processing Time 0.02 seconds

Metagenome Resource for D-Serine Utilization in a DsdA-Disrupted Escherichia coli

  • Lim, Mi-Young;Lee, Hyo-Jeong;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.374-378
    • /
    • 2011
  • To find alternative genetic resources for D-serine dehydratase (E.C. 4.3.1.18, dsdA) mediating the deamination of D-serine into pyruvate, metagenomic libraries were screened. The chromosomal dsdA gene of a wild-type Escherichia coli W3110 strain was disrupted by inserting the tetracycline resistance gene (tet), using double-crossover, for use as a screening host. The W3110 dsdA::tet strain was not able to grow in a medium containing D-serine as a sole carbon source, whereas wild-type W3110 and the complement W3110 dsdA::tet strain containing a dsdA-expression plasmid were able to grow. After introducing metagenome libraries into the screening host, a strain containing a 40-kb DNA fragment obtained from the metagenomic souce derived from a compost was selected based on its capability to grow on the agar plate containing D-serine as a sole carbon source. For identification of the genetic resource responsible for the D-serine degrading capability, transposon-${\mu}$ was randomly inserted into the 40-kb metagenome. Two strains that had lost their D-serine degrading ability were negatively selected, and the two 6-kb contigs responsible for the D-serine degrading capability were sequenced and deposited (GenBank code: HQ829474.1 and HQ829475.1). Therefore, new alternative genetic resources for D-serine dehydratase was found from the metagenomic resource, and the corresponding ORFs are discussed.

Participation of D-serine and NR2 subunits in EphA4-mediated trigeminal neuropathic pain

  • Kim, Myung-Dong;Kim, Min-Ji;Son, Jo-Young;Kim, Yu-Mi;Ju, Jin-Sook;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.84-91
    • /
    • 2020
  • The present study investigated the participation of D-serine and NR2 in antinociception produced by blockade of central erythropoietin-producing hepatocellular carcinoma (Eph) A4 (EphA4) signaling in rats with trigeminal neuropathic pain. Trigeminal neuropathic pain was modeled in male Sprague-Dawley rats using mal-positioned dental implants. The left mandibular second molar was extracted under anesthesia, and a miniature dental implant was placed to induce injury to the inferior alveolar nerve. Our current findings showed that nerve injury induced by malpositioned dental implants significantly produced mechanical allodynia; additionally, the inferior alveolar nerve injury increased the expression of D-serine and NR2 subunits in the ipsilateral medullary dorsal horn (trigeminal subnucleus caudalis). Intracisternal administration of EphA4-Fc, an EphA4 inhibitor, inhibited nerve injury-induced mechanical allodynia and upregulated the expression of D-serine and NR2 subunits. Moreover, intracisternal administration of D-amino acids oxidase, a D-serine inhibitor, inhibited trigeminal mechanical allodynia. These results show that D-serine and NR2 subunit pathways participate in central EphA4 signaling after an inferior alveolar nerve injury. Therefore, blockade of D-serine and NR2 subunit pathways in central EphA4 signaling provides a new therapeutic target for the treatment of trigeminal neuropathic pain.

D-amino Acid Oxidase (DAO) Gene as a Novel Selection Marker for Plant Transformation (새로운 선발 마커 D-아미노산 산화효소 유전자를 이용한 식물 형질전환)

  • Lim, Sun-Hyung;Woo, Hee-Jong;Lee, Si-Myung;Jin, Yong-Moon;Cho, Hyun-Suk
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • Though higher plants car not metabolize D-amino acid, many prokaryotes and eukaryotes have the D-amino acid metabolism. Therefore, we transformed tobacco plants with D-amino acid oxidase (DAO), which can metabolize D-amino acid, and confirmed that transgenic tobacco plants might metabolize D-amino acid. Transgenic tobacco plants were survived a high concentration of D-serine, however non-transgenic plants were not grown on D-serine medium. From Southern and Northern blot analysis, transgenic tobacco plants selected on D-serine medium were confirmed by insert and expression of transgene. $T_{1}$ tobacco seeds derived $T_{0}$ tobacco plants selfing were grown on D-serine medium and showed normal phenotype compared to wild tobacco plants. Transgenic tobacco plants displayed the metabolic capability of D-serine. Therefore, we suggested that DAO is useful selectable marker gene for plant transformation.

Kinetic Characterization of an Iron-sulfur Containing Enzyme, L-serine Dehydratase from Mycobacterium tuberculosis H37Rv (Mycobacterium tuberculosis H37Rv로부터 유래된 철-황 함유 효소인 L-세린 탈수화효소의 동력학적 특성)

  • Han, Yu Jeong;Lee, Ki Seog
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.351-356
    • /
    • 2018
  • L-Serine dehydratase (LSD) is an iron-sulfur containing enzyme that catalyzes the conversion of L-serine to pyruvate and ammonia. Among the bacterial amino acid dehydratases, it appears that only the L-serine specific enzymes utilize an iron-sulfur cluster at their catalytic site. Moreover, bacterial LSDs are classified into four types based on structural characteristics and domain arrangement. To date, only the LSD enzymes from a few bacterial strains have been studied, but more detailed investigations are required to understand the catalytic mechanism of various bacterial LSDs. In this study, LSD type II from Mycobacterium tuberculosis (MtLSD) H37Rv was expressed and purified to elucidate the biochemical and catalytic properties using the enzyme kinetic method. The L-serine saturation curve of MtLSD exhibited a typically sigmoid character, indicating an allosteric cooperativity. The values of $K_m$ and $k_{cat}$ were estimated to be $59.35{\pm}1.23mM$ and $18.12{\pm}0.20s^{-1}$, respectively. Moreover, the plot of initial velocity versus D-serine concentration at fixed L-serine concentrations showed a non-linear hyperbola decay shape and exhibited a competitive inhibition for D-serine with an apparent $K_i$ value of $30.46{\pm}5.93mM$ and with no change in the $k_{cat}$ value. These results provide insightful biochemical information regarding the catalytic properties and the substrate specificity of MtLSD.

Protection Process of the tert-Butyl Group as a Non-Polar Moiety of D-Serine: Unexpected Rearrangement

  • Choi, Bo-Eun;Jeong, Jin-Hyun
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.564-567
    • /
    • 2000
  • The use of amino acid derivatives as building blocks in peptide synthesis is increasingly being recognized as a potential route for the development of pharmaceutical agents. Side chain protection of polyfunctional amino acids such as Ser, Thr, Tyr is viewed as being particularly important. Although these derivatives are commercially listed, they are expensive and not widely available. We describe here a practical large-scale synthesis of t-butyl introduced D-serine, one of the building blocks of zoladex, a peptide drug.

  • PDF

Synthetic Studies on Phospholipid Derivatives 1. Comparative Syntheses of (R)-and (S)-Glycerol Acetonide (Phospholipid 유도체에 관한 연구 1. (R)-과 (S)-Glycerol acetonide의 효과적인 비교합성)

  • Sung Ki Chung;B. E. Kim;K. S. Chang
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.253-257
    • /
    • 1991
  • The optically active glycerol acetonides are often used as important chiral intermediates for many syntheses. In connection with the development of inhibitors of phospholipases, we have compared the synthetic routes to (S)-and (R)-glycerol acetonide from D-mannitol and D-isoascorbic acid, and L-serine and L-ascorbic acid, respectively. In our hands, the conversions of L-serine to (R)-glycerol acetonide and of D-mannitol to (S)-glycerol acetonide were found to be most effective.

  • PDF

Cloning of a Novel $Na^+$-Dependent L-Serine Specific Symporter Gene from Haemophilus influenzae Rd and Characteristics of the Transporter

  • Kim, Young-Mog;Rhee, In-Koo;Tsuchiya, Tomofusa
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.520-524
    • /
    • 2004
  • A protein that exhibited a high similarity to a major serine transporter of Escherichia coli, SdaC, was found in Haemophilus injluenzae Rd. Also, $Na^+$-stimulated serine transport activity was detected in the cells. The sdaC of H. injluenzae was cloned and the properties of the transporter were investigated. The activity of serine transport was stimulated by $Na^+$. Uptake of $Na^+$ elicited by L-serine influx into cells was also observed, which supports the idea that L-serine is transported by a mechanism of $Na^+$serine symport. No uptake of $H^+$ elicited by L-serine influx was detected. This result was not consistent with that obtained with the homologous protein, SdaC of E. coli, which uses $H^+$as a coupling cation. The serine transport via the SdaC of H. influenzae was not inhibited by other amino acids such as threonine or D-serine like the SdaC of E. coli. Thus, the SdaC of H. influenzae is a $Na^+$-dependent L-serine specific symporter and an unusual natural mutant. The $K_m$ and the $V_{max}$, value for the serine transport in the SdaC of H. influenzae were $7.6\mu$M and 22.9 nmol/min/mg protein, respectively.

Characteristics of $Na^{+}$-dependent Serine Transport in Haemophilus Influenzae Rd

  • Kim, Young-Mog;Rhee, In-Koo;Park, Mi-Yeon;Chang, Dong-Suck;Tomofusa Tsuchiya
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.78-82
    • /
    • 2003
  • We identified two proteins in Haemophilus influenzae Rd that exhibited high similarity to two major serine transporters of Escherichia coli (SstT and SdaC). Then, we investigated serine transport in H. influenzae Rd and detected $Na^{+}$-stimulated L-serine transport activity. The optimum NaCl concentration for this stimulation was about 20 mM. The uptake of $Na^{+}$ by H. influenzae Rd was found to be elicited by L-serine influx, which supports the idea that L-serine is transported by a mechanism of $Na^{+}$/serine symport. No uptake of $H^{+}$ elicited by L-serine influx was detected. $Na^{+}$/serine symport activity was not inhibited by other amino acids such as L-threonine or D-serine. Two distinct Km values were obtained from the kinetic analysis of serine transport. Thus, two serine transport pathways may exist in H. influenzae Rd, and it appears that both systems are stimulated by $Na^{+}$.

Effects of Mutation at Two Conserved Aspartate Residues and a Serine Residue on Functions of Yeast TSA 1 (Saccharomyces cerevisiae TSA1의 보존된 아스파트산 잔기 및 세린 잔기의 변이가 과산화효소 활성 및 샤페론 활성에 미치는 영향)

  • Lee, Songmi;Cho, Eun Yi;Kim, Kanghwa
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.81-86
    • /
    • 2017
  • Alignment of 967 reference sequences of the typical 2-Cys peroxiredoxin family of proteins revealed that 10 amino acids were conserved, with over 99% identity. To investigate whether the conserved aspartic acid residues and serine residue affect the peroxidase and chaperone activity of the protein, we prepared yeast TSA1 mutant proteins in which aspartic acids at positions 75 and 103 were replaced by valine or asparagine, and serine at position 73 was replaced by alanine. By non-reducing SDS-PAGE, TSA1 and the S73A, D75V and D75N mutants were detected in dimeric form, whereas the D103V and D103N mutants were detected in various forms, ranging from high molecular-weight to monomeric. Compared with wild type TSA1, the D75N mutant exhibited 50% thioredoxin peroxidase activity, and the S73A and D75V mutants showed 25% activity. However, the D103V and D103N mutants showed no peroxidase activity. All proteins, except for the D103V and D103N mutants, exhibited chaperone activity at $43^{\circ}C$. Our results suggest that the two conserved aspartic acid residues and serine residue of TSA1 play important roles in its thioredoxin peroxidase activity, and D103 plays a critical role in its chaperone activity.

D99 Type I Signal Peptidase Implicated Stabilizing the Protein Structure (Type I 신호펩디드 가수분해효소에 존재하는 D99 아미노산 잔기의 구조적 역할 가능성)

  • Sung, Meesook;Eunyoung Han;Lee, Hoyoung
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.140-144
    • /
    • 2003
  • Type Ⅰ signal peptidase is an integral membrane protein that functions to cleave signal peptides from secreted and membrane proteins. The enzyme serves as a potential target for the development of novel antibacterial agents due to its unique physiological properties. Despite being one of the best characterized enzymes, the catalysis of Type Ⅰ signal peptidase still remains controversy over the catalytic serine/lysine dyad mechanism. It appears that the dyad proteases are generally less efficient than the prototypical serine/histidine/aspartic acid triad found in most enzymes, although Type Ⅰ signal peptidase is an exception to this rule. In this paper, we have proposed that Type Ⅰ signal peptidase may act as the serine/lysine/aspartic acid triad cataltytic mechanism. Therefore, the aspartic acid 99 residue in the E. coli signal peptidase was chosen and mutated to an alanine to see if there is any possible role of the aspartic acid in the catalytic function. Type Ⅰ signal peptidase D99A protein was inactive in vitro assay using the procoat synthesized by in vitro transcription translation. However, the mutant was active using a highly sensitive in vivo assay. Pulse-chase experiments show that the replacement of aspartic acid 99 with alanine results in a very unstable signal peptidase molecule. Therefore, we conclude that it is unlikely that the residue is directly involved in catalysis, but rather plays an important role in stabilizing the protein structure.