Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.3.351

Kinetic Characterization of an Iron-sulfur Containing Enzyme, L-serine Dehydratase from Mycobacterium tuberculosis H37Rv  

Han, Yu Jeong (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
Lee, Ki Seog (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
Publication Information
Journal of Life Science / v.28, no.3, 2018 , pp. 351-356 More about this Journal
Abstract
L-Serine dehydratase (LSD) is an iron-sulfur containing enzyme that catalyzes the conversion of L-serine to pyruvate and ammonia. Among the bacterial amino acid dehydratases, it appears that only the L-serine specific enzymes utilize an iron-sulfur cluster at their catalytic site. Moreover, bacterial LSDs are classified into four types based on structural characteristics and domain arrangement. To date, only the LSD enzymes from a few bacterial strains have been studied, but more detailed investigations are required to understand the catalytic mechanism of various bacterial LSDs. In this study, LSD type II from Mycobacterium tuberculosis (MtLSD) H37Rv was expressed and purified to elucidate the biochemical and catalytic properties using the enzyme kinetic method. The L-serine saturation curve of MtLSD exhibited a typically sigmoid character, indicating an allosteric cooperativity. The values of $K_m$ and $k_{cat}$ were estimated to be $59.35{\pm}1.23mM$ and $18.12{\pm}0.20s^{-1}$, respectively. Moreover, the plot of initial velocity versus D-serine concentration at fixed L-serine concentrations showed a non-linear hyperbola decay shape and exhibited a competitive inhibition for D-serine with an apparent $K_i$ value of $30.46{\pm}5.93mM$ and with no change in the $k_{cat}$ value. These results provide insightful biochemical information regarding the catalytic properties and the substrate specificity of MtLSD.
Keywords
Allosteric cooperativity; iron-sulfur cluster; L-serine dehydratase (LSD); Mycobacterium tuberculosis H37Rv; substrate specificity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kanfer, J. and Kennedy, E. P. 1964. Metabolism and function of bacterial lipids. II. biosynthesis of phospholipids in Escherichia coli. J. Biol. Chem. 239, 1720-1726.
2 Ramos, F. and Wiame, J. M. 1982. Occurrence of a catabolic L-serine (L-threonine) deaminase in Saccharomyces cerevisiae. Eur. J. Biochem. 123, 571-576.
3 Thoden, J. B., Holden, H. M. and Grant, G. A. 2014. Structure of L-serine dehydratase from Legionella pneumophila: Novel use of the Cterminal cysteine as an intrinsic competitive inhibitor. Biochemistry 53, 7615-7624.   DOI
4 Xu, X. L. and Grant, G. A. 2013. Identification and characterization of two new types of bacterial L-serine dehydratases and assessment of the function of the ACT domain. Arch. Biochem. Biophys. 540, 62-69.   DOI
5 Zhang, X. and Newman, E. 2008. Deficiency in L-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12. Mol. Microbiol. 69, 870-881.
6 Zhang, X., El-Hajj, Z. W. and Newman, E. 2010. Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12. J. Bacteriol. 192, 5515-5525.   DOI
7 Cherest, H., Thomas, D. and Surdin-Kerjan, Y. 1993. Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment. J. Bacteriol. 175, 5366-5374.   DOI
8 Flint, D. H. and Allen, R. M. 1996. Iron-sulfur proteins with non-redox functions. Chem. Rev. 96, 2315-2334.   DOI
9 Cicchillo, R. M., Baker, M. A., Schnitzer, E. J., Newman, E. B., Krebs, C. and Booker, S. J. 2004. Escherichia coli L-serine deaminase requires a [4Fe-4S] cluster in catalysis. J. Biol. Chem. 279, 32418-32425.   DOI
10 Dey, S., Grant, G. A. and Sacchettini, J. C. 2005. Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J. Biol. Chem. 280, 14892-14899.   DOI
11 Friedemann, T. E. and Haugen, G. E. 1943. Pyruvic acid II. The determination of keto acids in blood and urine. J. Biol. Chem. 147, 415-442.
12 Grabowski, R. and Buckel, W. 1991. Purification and properties of an iron-sulfur-containing and pyridoxal-phosphate independent L-serinedehydratase from Peptostreptococcus asaccharolyticus. Eur. J. Biochem. 199, 89-94.   DOI
13 Grabowski, R., Hofmeister, A. E. and Buckel, W. 1993. Bacterial L-serine dehydratases: A new family of enzymes containing iron-sulfur clusters. Trends Biochem. Sci. 18, 297-300.   DOI
14 Hama, H., Katahera, T., Tsuda, M. and Tsuchiya, T. 1991. Inhibition of homoserine dehydrogenase I by L-serine in Escherichia coli. J. Biochem. 109, 604-608.   DOI
15 Hofmeister, A. E., Albracht, S. P. and Buckel, W. 1994. Iron-sulfur cluster-containing L-serine dehydratase from Peptostreptococcus asaccharolyticus: correlation of the cluster type with enzymatic activity. FEBS Lett. 351, 416-418.   DOI
16 Blakley, R. L. 1969. The Biochemistry of Folic Acid and Related Pteridines. North-Holland Publishing Company, Amsterdam.
17 Alfoldi, L., Rasko, I. and Kerekes, E. 1968. L-serine deaminase of Escherichia coli. J. Bacteriol. 96, 1512-1518.
18 Bae-Lee, M. S. and Carman, G. M. 1984. Phosphatidylserine synthesis in Saccharomyces cerevisiae. Purification and characterization of membrane-associated phosphatidylserine synthase. J. Biol Chem. 259, 10857-10862.
19 Barreteau, H., Kovac, A., Boniface, A., Sova, M., Gobec, S. and Blanot, D. 2008. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 168-207.   DOI
20 Burton, R. L., Chen, S., Xu, X. L. and Grant, G. A. 2009. Role of the anion-binding site in catalysis and regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. Biochemistry 48, 4808-4815.   DOI
21 Carter, J. E. and Sagers, R. D. 1972. Ferrous ion-dependent L-serine dehydratase from Clostridium acidiurici. J. Bacteriol. 109, 757-763.
22 Chen, S., Xu, X. L. and Grant, G. A. 2012. Allosteric activation and contrasting properties of L-serine dehydratase types 1 and 2. Biochemistry 51, 5320-5328.   DOI
23 Cherest, H. and Surdin-Kerjan, Y. 1992. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130, 51-58.