• Title/Summary/Keyword: D-psicose

Search Result 10, Processing Time 0.024 seconds

Maillard Browning Reaction of D-Psicose as Affected by Reaction Factors

  • Baek, Seung-Hee;Kwon, So-Young;Lee, Hyeon-Gyu;Baek, Hyung-Hee
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1349-1351
    • /
    • 2008
  • This study examined the effects of temperature, D-psicose concentration, pH, and various amino acids on the Maillard browning reaction of D-psicose and glycine mixture and compared browning color intensity with those of other sugars, such as sucrose, D-glucose, D-fructose, and D-tagatose. When D-psicose (0.1 M) and glycine (0.1 M) mixture was heated at $70-100^{\circ}C$ for 5 hr, the absorbance at 420 nm increased with increasing reaction temperature and time. The Hunter a, b values, and color difference (${\Delta}E$) increased with increasing D-psicose concentration and pH within the range of pH 3-7 except at pH 6, while the L value decreased. The rate of Maillard browning reaction was in order of D-tagatose>D-psicose $\fallingdotseq$ D-fructose>D-glucose>sucrose. The browning color intensity of the D-psicose-basic and non-polar amino acids mixtures was higher than that of the D-psicose-acidic amino acids.

GalaxyTBM을 이용한 Clostridium hylemonae의 ᴅ-Psicose 3-Epimerase (DPE) 단백질 구조 예측

  • Lee, Hyeon-Jin;Park, Ji-Hyeon;Choe, Yeon-Uk;Lee, Geun-U
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.177-183
    • /
    • 2015
  • $\text\tiny{D}$-Psicose 3-Epimerase (DPE)는 $\text\tiny{D}$-Fructose의 C3 Epimerase로써 $\text\tiny{D}$-Fructose를 $\text\tiny{D}$-Psicose로 전환해 주는 효소이다. $\text\tiny{D}$-Psicose는 설탕 대신 사용하는 감미료로 몸에 흡수되지 않아 칼로리가 없다고 알려져 있고 자연에서는 오로지 DPE에 의해서만 생산되는 희귀당이다. 이에 따라 DPE를 통한 $\text\tiny{D}$-Psicose 대량생산의 필요성이 대두되고 있는 등 이 분야에 대한 관심이 뜨거운 실정이다. 본 연구팀은 이 당과 관련된 작용기작 연구를 수행하기 위하여 아직 단백질 3차구조가 알려지지 않은 Clostridium hylemonae DPE (chDPE) 단백질의 3차 구조예측 연구를 수행 하였다. 우리는 HHsearch를 이용하여 agrobacterium tumefaciens의 DPE 외 2개의 구조를 호몰로지 모델링 연구를 위한 주형으로 선정하였다. 다음으로 PROMALS3D를 이용하여 주형들과 chDPE의 multiple sequence alignment를 수행하였고 이를 바탕으로 3차구조 예측 연구를 수행 하였다. 예측된 구조를 검증하기 위하여 ProSA와 Ramachandran plot분석을 이용하였고 Ramachandran plot에서 단백질의 94.8%에 해당하는 잔기들이 favoured regions에 위치하였다. ProSA에서는 Z-score값이 -9.3으로 X-선 결정학이나 핵자기 공명법으로 밝혀진 구조들에서 관측되는 범위 내에 위치하였다. 나아가 예측된 구조에 $\text\tiny{D}$-Psicose와 $\text\tiny{D}$-Fructose의 결합모드를 규명하기 위하여 도킹을 시도하였다. 이번 연구를 통하여 chDPE의 구조를 예측 할 수 있었고 이를 바탕으로 이 단백질의 기능을 이해하는데 도움을 줄 것으로 기대된다.

  • PDF

Production of Rare Monosaccharides Using Microorganisms and Their Enzymes

  • Izumori, Ken;Bhuiyan, Shakhawat Hossain
    • Food Industry And Nutrition
    • /
    • v.2 no.1
    • /
    • pp.16-21
    • /
    • 1997
  • Microbial of enzymatical methods are suitable for production of rare monosaccharides. Using oxidation and reduction ability of Microorganisms, various rare ketoses and polyols can be produced, for example D-tagatose from galagtitol by Enterobacter agglomerans strain 221e. L-tagatose from galactitol by Klebsiella pheumonias strain 40b, L-psicose from allitol by Gluconobacter frateurii IFO 3254, D-talitol from d-tagatose by Aureobasidium pullulans strain 113B, allitol from D-psicose by Enterobacter agglomerans strain 221e and so on. We can produce various rare aldoses and ketoses using aldose isomerases, for example L-galactose from L-tagatose by D-arabnose isomerase, and L-ribose from L-ribulose by L-isomerase, and so on. D-Tagatose 3-epimerase of Pseudomonas sp. ST-24 is very useful for preparationof various rare ketoses, for example D-psicose from D-fructose, D-sorbose from D-tagatose, L-fructose, from L-psicose and so on. Using polyol dehydrogenases, aldose isomerases and D-tagatose 3-epimerase, we can design the suitable for production of a certain rare monosaccharide from a suitable substrate.

  • PDF

Expression, Purification, and Crystallization of D-Psicose 3-Epimerase from Agrobacterium tumefaciens

  • Kim Kwang-Soo;Kim Hye-Jung;Oh Deok-Kun;Cheong Jong-Joo;Rhee Sang-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.647-650
    • /
    • 2006
  • D-Psicose 3-epimerase (DPE) catalyzes the interconversion of D-fructose to D-psicose by epimerizing the carbon-3 position. The DPE from Agrobacterium tumefaciens was cloned and expressed in Escherichia coli. The expressed enzyme was purified by affinity chromatography on an IMAC, gel filtration chromatography on a Sephacryl S-300 HR, and anion-exchange chromatography on a RESOURCE Q. The molecular mass of the purified enzyme was estimated to be about 135 kDa by Superdex 200 gel filtration chromatography, corresponding to a homotetramer. The enzyme produced crystals suitable for X-ray diffraction to a $2.0{\AA}$ resolution at 100 K. The crystals were found to belong to the orthorhombic space group $P2_12_12_1$, with unit-cell parameters a=102.4, b=113.0, and $c=131.8{\AA}$. In addition, the calculated packing parameter $(V_m)$ was $2.79{\AA}^3/Da$, the solvent content was 55.92%, and an asymmetric unit consisted of four monomers.

Characterization of Aldolase from Methanococcus jannaschii by Gas Chromatography

  • NamShin, Jeong-E.;Kim, Mi-Jung;Choi, Ji-Ah;Chun, Keun-Ho
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.801-804
    • /
    • 2007
  • The products of reactions catalyzed by Methanococcus. jannaschii (Mj) aldolase using various substrates were identified by gas chromatography (GC). Although Mj aldolase is considered a fuculose-1-phosphate aldolase based on homology searching after gene sequencing, it has not been proven to be a fuculose-1-phosphate aldolase based on its reaction products. Mj aldolase was found to catalyze reactions between glycoaldehyde or D, L-glyceraldehyde and DHAP (dihydroxyacetone phosphate). Before performing GC the ketoses produced were converted into peracetylated alditol derivatives by sequential reactions, i.e., dephosphorylation, $NaBH_4$ reduction, and acetylation. By comparing the GC data of final products with those of standard alditol samples, it was found that the enzymatic reactions with glycoaldehyde, D-glyceraldehyde, and D, L-glyceraldehyde produced D-ribulose-1-phosphate, D-psicose-1-phosphate, and a mixture of D-psicose and L-tagatose-1-phosphate, respectively. These results provide direct evidence that Mj aldolase is a fuculose-1-phosphate aldolase.

Retention Analysis of Binary Mixture Injected into a Four-Zone Simulated Moving Bed at Steady-State (정상상태의 4 구역 SMB 공정에 유입된 이성분계 물질의 체류 분석)

  • Yang, Jinhyo;Kim, Jin-Il;Koo, Yoon-Mo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.732-738
    • /
    • 2008
  • Simulated moving bed (SMB) process is a continuous chromatographic technology used to separate a large amount of petrochemicals, fine chemicals, pharmaceuticals, and so on, drawing a great attraction of related industries. With the recent development of biotechnology, the SMB process has been adopted for the separation of various useful bio-products. Attempts to understand the separation mechanism of the SMB process in many aspects are reported in many publications. These researches have dealt with the improvement of SMB for easier operation and solving problem in process. The feed mixture fed into the SMB process may be of different concentration batch by batch rather than in uniform concentration. Retention behaviors of feed (psicose (A) and fructose (B) mixture) existing in the SMB unit in dynamic steady-state and feed (psicose (C) and fructose (D) mixture) newly injected into the SMB were analyzed. It was observed that the existing components, (A) and (B), were eluted relatively faster as the injection time of new feed was earlier during the port-switching period. In addition, the components (C) and (D) were eluted earlier as fresh feed was injected earlier in a port-switching time.

Biological characteristics of Streptococcus iniae and Streptococcus parauberis isolated from cultured flounder, Paralichthys olivaceus, In Jeju (제주지역 양식 넙치(Paralichthys olivaceus)로부터 분리되는 Streptococcus iniae와 Streptococcus parauberis의 생물학적 특성)

  • Lee, Chang-Hoon;Kim, Pil-Youn;Ko, Chang-Sik;Oh, Duck-Chul;Kang, Bong-Jo
    • Journal of fish pathology
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • Biochemical characteristic of Streptococcus iniae and Streptococcus parauberis that are pathogens of streptococcosis of cultured flounder, Paralichthys olivaceus, in Jeju area was examined. The result of experiments on the grow according to temperatures showed that only S. parauberis grew at 10℃, the result of hemolysis test showed that only S. iniae bacteria showed β hemolysis. Only S. parauberis were positive in VP test and HIP test, both bacteria used α-D-glucose, D-mannose, D-psicose, D-trehalose, pyruvatic acid methyl ester, and glycerol as substrates. L-lactic acid was used only S. iniae bacteria, and β-methyl-D-glucosid was used only by S. parauberis. S. iniae exhibited acute infection patten, differently S. parauberis exhibited chronic infection patten in pathogenic test.

Bioconversion of Rare Sugars by Isomerases and Epimerases from Microorganisms (미생물 유래 당질관련 이성화효소 및 에피머효소를 이용한 희소당 생물전환)

  • Kim, Yeong-Su;Kim, Sang Jin;Kang, Dong Wook;Park, Chang-Su
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1545-1553
    • /
    • 2018
  • The International Society of Rare Sugars (ISRS) defines rare sugars as monosaccharides and their derivatives that rarely occur in nature. Rare sugars have recently received much attention because of their many uses including low-calorie sweeteners, bulking agents, and antioxidants, and their various applications including as immunosuppressants in allogeneic rat liver transplantation, as potential inhibitors of various glycosidases and microbial growth, in ischemia-reperfusion injury repair in the rat liver, and in segmented neutrophil production without detrimental clinical effects. Because they rarely exist in nature, the production of rare sugars has been regarded as one of the most important research areas and, generally, they are produced by chemical synthesis. However, the production of rare sugars by bioconversion using enzymes from microorganisms has been receiving increased attention as an environmentally friendly alternative production method. In particular, D-allulose, D-allose, and D-tagatose are of interest as low-calorie sweeteners in various industries. To date, D-tagatose 3-epimerase, D-psicose 3-epimerase, and D-allulose 3-epimerase have been reported as D-allulose bioconversion enzymes, and L-rhamnose isomerase, Galactose 6-phosphate isomerase, and Ribose 5-phosphate isomerase have been identified as D-allose production enzymes. Elsewhere, D-tagatose has been produced by L-arabinose isomerase from various microorganisms. In this study, we report the production of D-allulose, D-allose, and D-tagatose by microorganism enzymes.