Metabolic engineering of *Escherichia coli* for production of D-psicose and D-allose from glucose and fructose

Sook-Hee Lee\(^1\), Sang-Hwal Yoon\(^1\), Jung-Hun Kim\(^1\), Ju-Eun Kim\(^1\), Hye-Min Park\(^1\), Eun-Kyung Lee\(^1\), Min-Soo Ko\(^2\), Deok-Kun Oh\(^3\), and Seon-Won Kim\(^1\)

\(^1\)Division of Applied Life Science(BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea,

\(^2\)SolGent Co., \(^3\)Dept. of Biotechnology, Sejong University

TEL: +82-55-751-5974, FAX: +82-55-751-5971

Abstract

D-Psicose and D-allose, a rare keto and aldo-hexose, are not abundant in nature and are difficult to prepare by chemical methods. For the production of D-psicose and D-allose, we used allose operon of *Escherichia coli*, and D-tagatose 3-epimerase of *Agrobacterium tumefaciens* and L-rhamnose isomerase of *E. coli*. In order to use the allose operon, *E. coli* was transformed with pTalsEBK containing alsE, rpiB, and alsK. When *E. coli* harboring pTalsEBK was cultivated in 2YT medium with 30g/L of glucose or fructose, 1g/L of D-psicose was obtained approximately. It seems that rpiB can not convert psicose-6-phosphate to allose-6-phosphate. Therefore, psicose-6-phosphate 3-epimerase and allose-6-phosphate isomerase encoded by alsE and rpiB were purified and the in vitro reaction catalyzed by these enzymes were investigated. Psicose-6-phosphate 3-epimerase can epimerize fructose-6-phosphate to psicose-6-phosphate and has no substrate specificity on unphosphorylated fructose. Allose-6-phosphate isomerase can isomerize D-allose to D-psicose but, not D-psicose to D-allose. The other scheme for production of the rare sugars was performed with D-tagatose 3-epimerase and L-rhamnose isomerase by which fructose was epimerized to D-psicose and then isomerized to D-allose. When recombinant *E. coli* harboring pTTE-rhaA with Atu4750 and rhaA was cultivated in 2YT medium containing 30g/L of fructose, both rare sugars of D-psicose and D-allose were observed. D-psicose was obtained upto 5g/L. These *in vivo* conversion reaction were confirmed *in vitro* by using purified enzymes of
D-tagatose 3-epimerase and L-rhamnose isomerase.

Acknowledgments

This work was supported by grant No.(R01-2004-000-10012-0) from the Basic Research program of the Korea Science & Engineering Foundation. The scholarship of authors was supported by the BK21 program of Korea.

References